Given a compact manifold and real numbers and , we prove that the class of smooth maps on the cube with values into is strongly dense in the fractional Sobolev space when is simply connected. For integer, we prove weak sequential density of when is simply connected. The proofs are based on the existence of a retraction of onto except for a small subset of and on a pointwise estimate of fractional derivatives of composition of maps in .
@article{CML_2013__5_2_3_0, author = {Bousquet, Pierre and Ponce, Augusto C. and Van Schaftingen, Jean}, title = {Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$}, journal = {Confluentes Mathematici}, volume = {5}, year = {2013}, pages = {3-22}, doi = {10.5802/cml.5}, mrnumber = {3145030}, language = {en}, url = {http://dml.mathdoc.fr/item/CML_2013__5_2_3_0} }
Bousquet, Pierre; Ponce, Augusto C.; Van Schaftingen, Jean. Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$. Confluentes Mathematici, Tome 5 (2013) pp. 3-22. doi : 10.5802/cml.5. http://gdmltest.u-ga.fr/item/CML_2013__5_2_3_0/
[1] Sobolev spaces, Academic Press, New York-London (Pure and Applied Mathematics, Vol. 65) | MR 450957 | Zbl 0314.46030
[2] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 7, pp. 269-286 | Numdam | MR 1067776 | Zbl 0708.58004
[3] Approximations in trace spaces defined between manifolds, Nonlinear Anal., Tome 24 no. 1, pp. 121-130 | Article | MR 1308474 | Zbl 0824.58011
[4] The approximation problem for Sobolev maps between two manifolds, Acta Math., Tome 167 no. 3-4, pp. 153-206 | Article | MR 1120602 | Zbl 0756.46017
[5]
(in preparation)[6] Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Tome 1 no. 4, pp. 387-404 | Article | MR 1877265 | Zbl 1023.46031
[7] Degree theory and BMO, Part I : compact manifolds without boundaries, Selecta Math., pp. 197-263 | MR 1354598 | Zbl 0852.58010
[8] Strong density for higher order Sobolev spaces into compact manifolds (submitted paper)
[9] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Tome 80 no. 1, pp. 60-75 | Article | MR 960223 | Zbl 0657.46027
[10] Some remarks on the density of regular mappings in Sobolev classes of -valued functions, Rev. Mat. Univ. Complut. Madrid, Tome 1 no. 1-3, pp. 127-144 | MR 977045 | Zbl 0678.46028
[11] Normal and integral currents, Ann. of Math. (2), Tome 72, pp. 458-520 | MR 123260 | Zbl 0187.31301
[12] Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili, Rend. Sem. Mat. Univ. Padova, Tome 27, pp. 284-305 | Numdam | MR 102739 | Zbl 0087.10902
[13] Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., Tome 8, pp. 24-51 | MR 109295 | Zbl 0199.44701
[14] Density of smooth maps in for a close to critical domain dimension, Ann. Global Anal. Geom., Tome 39 no. 2, pp. 107-129 | MR 2748341 | Zbl 1207.58012
[15] Approximation of Sobolev mappings, Nonlinear Anal., Tome 22 no. 12, pp. 1579-1591 | Article | MR 1285094 | Zbl 0820.46028
[16] Density problems for , Comm. Pure Appl. Math., Tome 55 no. 7, pp. 937-947 | Article | MR 1894159 | Zbl 1020.58010
[17] On certain convolution inequalities, Proc. Amer. Math. Soc., Tome 36, pp. 505-510 | MR 312232 | Zbl 0283.26003
[18] Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 5 no. 4, pp. 297-322 | Numdam | Zbl 0657.49018
[19] Topology of Sobolev mappings. II, Acta Math., Tome 191 no. 1, pp. 55-107 | MR 2020419 | Zbl 1061.46032
[20] Topology of Sobolev mappings. III, Comm. Pure Appl. Math., Tome 56 no. 10, pp. 1383-1415 | Article | MR 1988894 | Zbl 1038.46026
[21] Sobolev spaces with applications to elliptic partial differential equations, Springer, Grundlehren der Mathematischen Wissenschaften, Tome 342 | Article | MR 2777530 | Zbl 1217.46002
[22] Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations, Amer. Math. Soc. (Contemp. Math.) Tome 446, pp. 413-436 (In honor of Haïm Brezis) | Article | MR 2376670 | Zbl 1201.46032
[23] An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ., Tome 2 no. 1, pp. 113-125 | Article | MR 1890884 | Zbl 1006.46024
[24] Strong density results in trace spaces of maps between manifolds, Manuscripta Math., Tome 128 no. 4, pp. 421-441 | Article | MR 2487434 | Zbl 1171.58002
[25] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), Tome 13, pp. 115-162 | Numdam | MR 109940 | Zbl 0088.07601
[26] Rôle des oscillations dans quelques problèmes d’analyse non linéaire (Thèse de doctorat)
[27] Weak density of smooth maps in for non-abelian , Ann. Global Anal. Geom., Tome 23 no. 1, pp. 1-12 | Article | MR 1952855 | Zbl 1040.58002
[28] Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., Tome 13 no. 1, pp. 223-257 | Article | Zbl 1028.58008
[29] Dense subsets of , Ann. Global Anal. Geom., Tome 18 no. 5, pp. 517-528 | Article | MR 1790711 | Zbl 0960.35022
[30] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter & Co., de Gruyter Series in Nonlinear Analysis and Applications, Tome 3 | Article | MR 1419319 | Zbl 0873.35001
[31] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton Mathematical Series, No. 30 | MR 290095 | Zbl 0207.13501
[32] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., Tome 18 no. 2, pp. 253-268 | MR 710054 | Zbl 0547.58020
[33] Infima of energy functionals in homotopy classes of mappings, J. Differential Geom., Tome 23 no. 2, pp. 127-142 | MR 845702 | Zbl 0588.58017