Let be a finite group, the smallest prime dividing the order of and a Sylow -subgroup of with the smallest generator number . There is a set of maximal subgroups of such that . In the present paper, we investigate the structure of a finite group under the assumption that every member of is either -permutably embedded or weakly -permutable in to give criteria for a group to be -supersolvable or -nilpotent.
@article{CML_2013__5_1_93_0, author = {Xie, Fenfang and Wang, Jinjin and Xia, Jiayi and Zhong, Guo}, title = {Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups}, journal = {Confluentes Mathematici}, volume = {5}, year = {2013}, pages = {93-100}, doi = {10.5802/cml.4}, mrnumber = {3143613}, language = {en}, url = {http://dml.mathdoc.fr/item/CML_2013__5_1_93_0} }
Xie, Fenfang; Wang, Jinjin; Xia, Jiayi; Zhong, Guo. Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups. Confluentes Mathematici, Tome 5 (2013) pp. 93-100. doi : 10.5802/cml.4. http://gdmltest.u-ga.fr/item/CML_2013__5_1_93_0/
[1] K. Al-Sharo, On some maximal -quasinormal subgroups of finite groups, Beiträge zur Algebra und Geometrie, 49:227–232, 2008. | MR 2410577 | Zbl 1144.20009
[2] M. Asaad, A. A. Heliel, On -quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165:129–135, 2001. | MR 1865961 | Zbl 1011.20019
[3] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127:113–118, 1998. | MR 1620696 | Zbl 0928.20020
[4] K. Doerk, Finite Soluble Groups, Berlin, Walterde Gruyter, 1992. | MR 1169099 | Zbl 0753.20001
[5] W. E. Deskins, On quasinormal subgroups of finite groups, Mathematische Zeitschrift, 82:125–132, 1963. | MR 153738 | Zbl 0114.02004
[6] D. Gorenstein, Finite group, Chelsea, New York, 1980.
[7] B. Huppert, Endliche gruppen I, Springer, Berlin, 1967. | MR 224703 | Zbl 0412.20002
[8] X. He, S. Li, X. Liu, On -quasinormal and -normal subgroups of prime power order in finite groups, Algebra Colloq., 18 (2011), 685–692. | MR 2837005 | Zbl 1241.20027
[9] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78:205–221, 1962. | MR 147527 | Zbl 0102.26802
[10] S. Li, X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36:2333–2340, 2008. | MR 2418390 | Zbl 1146.20015
[11] S. Li, Y. Li, On -quasinormal and -normal subgroups of a finite group, Czechoslovak Mathematical Journal 58:1083–1095, 2008. | MR 2471167 | Zbl 1166.20013
[12] S. Li, Z. Shen, J. Liu, et al, The influence of -quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319:4275–4287, 2008. | MR 2407900 | Zbl 1152.20019
[13] D. H. Mclain, The existence of subgroups of given order in finite groups, Proc.Cambridge Philos.Soc, 53:278–285, 1957. | MR 85260 | Zbl 0079.25403
[14] L. Miao, On weakly -permutable subgroups of finite groups, Bull Braz. Math. Soc. New Series, 41:223–235, 2010. | MR 2738912 | Zbl 1221.20014
[15] D. J. S. Robinson, A course in the Theory of groups, New York, Springer-Verlag, 1982. | MR 648604 | Zbl 0836.20001
[16] Z. Shen, W. Shi, Q. Zhang, -quasinormality of finite groups, Front. Math. China, 5:329–339, 2010. | MR 2610728 | Zbl 1200.20014
[17] P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207:285–293, 1998. | MR 1643106 | Zbl 0910.20015
[18] X. Shen, S. Li, W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13:257–265, 2010. | MR 2607580 | Zbl 1196.20022
[19] A. N. Skiba, On weakly -permutable subgroups of finite groups, J. Algebra, 315:192–209, 2007. | MR 2344341 | Zbl 1130.20019
[20] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J.Math, 35:210–214, 1980. | MR 576471 | Zbl 0437.20012
[21] J. G. Thompson, Normal -complements for finite groups, J. Algebra, 1:43–46, 1964. | MR 167521 | Zbl 0119.26802
[22] Y. Wang, -normality of groups and its properties, J. Algebra, 180:954–965, 1996. | MR 1379219 | Zbl 0847.20010
[23] Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224:464-478, 2000. | MR 1739589 | Zbl 0953.20010
[24] H. Wei, Y. Wang, On -normality and its properties, J. Group Theory, 10:211–223, 2007. | MR 2302616 | Zbl 1125.20011
[25] H. Wielandt, Subnormal subgroups and permutation groups, lectures given at the Ohio State University, Columbus, Ohio, 1971.