This is a short survey on some recent developments in the theory of phase transitions and microstructures in a mathematically rigorous context. The issue is discussed at the microscopic, mesoscopic and macroscopic levels recalling the most used mathematical techniques, mainly from probability theory and variational calculus.
@article{BUMI_2012_9_5_3_655_0, author = {Errico Presutti}, title = {Microstructures and Phase Transitions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {655-688}, zbl = {1278.82023}, mrnumber = {3051739}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_3_655_0} }
Presutti, Errico. Microstructures and Phase Transitions. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 655-688. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_3_655_0/
[1] A non local anisotropic model for phase transition. Part I: the optimal profile problem. Math. Ann., 310 (1998), 527-560. | MR 1612250
- ,[2] A non local anisotropic model for phase transition: asymptotic behaviour of rescaled energies. European J. Appl. Math., 9 (1998), 261- 284. | MR 1634336 | Zbl 0932.49018
- ,[3] Surface tension in Ising systems with Kac potentials. J. Stat. Phys., 82 (1996), 743-796. | MR 1372427 | Zbl 1042.82539
- - - ,[4] Functions of bounded variations and free discontinuity problems. Oxford Science Publications. (2000). | MR 1857292 | Zbl 0957.49001
- - ,[5] Constrained minima of non local free energy functionals. J. Stat. Phys., 84 (1996), 1337-1349. | MR 1412081 | Zbl 1081.82502
- - ,[6] The Wulff construction in three and more dimensions. Comm. Math. Phys., 207 (1999), 197-229. | MR 1724851 | Zbl 1015.82005
,[7] Gamma-Convergence for Beginners. Series: Oxford Lecture Series in Mathematics and Its Applications, number 22 (2002). | MR 1968440 | Zbl 1198.49001
,[8] On the Wulff crystal in the Ising model. Ann. Probab., 28 (2000), 947-1017. | MR 1797302 | Zbl 1034.82006
- ,[9] | MR 1201152 | Zbl 0816.49001
, An introduction to Gamma convergence. Birkhäuser (1993).[10] Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys., 134 (2009), 243. | MR 2485716 | Zbl 1167.82009
- - - ,[11] Uniqueness of the instanton profile and global stability in non local evolution equations. Rendiconti di Matematica, 14 (1993), 693-723. | MR 1312824 | Zbl 0821.45003
- - - ,[12]
- - - , Recent analytical developments in micromagnetics in The Science of Hysteresis II: Physical Modeling, Micromagnetics, and Magnetization Dynamics. and eds., pp. 269-381, Elsevier (2001).[13] | MR 1181197 | Zbl 0917.60103
- - , The Wulff construction: a global shape for local interactions. Amer. Math. Soc. Providence (1992).[14] | MR 1158660
- , Measure theory and fine properties of functions. Studies in Advanced Math. CRC Press, Boca Raton (1992).[15] Cluster expansion for abstract polymer models. New bounds from an old approach, Comm. Math. Phys., 274, n. 1 (2007), 123-140. | MR 2318850 | Zbl 1206.82148
- ,[16] The Analyticity Region of the Hard Sphere Gas. Improved Bounds. J. Stat. Phys., 128 (2007), 1139-1143. | MR 2348787 | Zbl 1206.82099
- - ,[17] The van der Waals limit for classical systems. I. A variational principle. Commun. Math. Phys., 15 (1969), 255-276. | MR 260283 | Zbl 0184.54705
- ,[18] The van der Waals limit for classical systems. II. Existence and continuity of the canonical pressure. Commun. Math. Phys., 16 (1970), 231-237. | MR 1552568
- ,[19] The van der Waals limit for classical systems. III. Deviation from the van der Waals-Maxwell theory. Commun. Math. Phys., 17 (1970), 194-209. | MR 1552570
- ,[20] Periodic Minimizers in 1D Local Mean Field Theory. Commun.Math.Phys., 286 (2009), 163-177. | MR 2470928 | Zbl 1173.82008
- - ,[21] Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions. Phys. Rev. B, 74 (2006), 064-420.
- - ,[22] Striped phases in two dimensional dipole systems. Phys. Rev. B, 76 (2007), 184-426.
- - ,[23] Modulated phases of a 1D sharp interface model in a magnetic field. Phys. Rev. B, 80 (2009), 134-420.
- - ,[24] Checkerboards, stripes, and corner energies in spin models with competing interaction. Phys. Rev. B, 84 (2011), 064205-1-10.
- - ,[25] Thermodynamics of evolving phase boundaries in the plane. Oxford Science Publications (1993). | MR 1402243 | Zbl 0787.73004
,[26]
- , Theory of Simple Liquids. Academic, London (1976).[27] The ground state for sticky disks. J. Statist. Phys., 22 (1980), 281-287. | MR 570369
- ,[28] 49 (1968), 3609.
- , J. Chem. Phys.,[29] On the van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model. J. Math. Phys., 4 (1963), 216-228. | MR 148416 | Zbl 0938.82517
- - ,[30] On the van der Waals theory of vapor-liquid equilibrium. II. Discussion of the distribution functions. J. Math. Phys., 4 (1963), 229-247. | MR 148417 | Zbl 0938.82518
- - ,[31] On the van der Waals theory of vapor-liquid equilibrium. III. Discussion of the critical region. J. Math. Phys., 5 (1964), 60-74. | MR 157692 | Zbl 0938.82519
- - ,[32] M. Hard-sphere fluids with chemical self-potentials. J. Math. Phys., 51 , no. 015206, 42, 82B21 (2010). | MR 2605839 | Zbl 1309.82030
- ,[33] Cluster expansion for abstract polymer models, Comm. Math. Phys., 103 (1986), 491-498. | MR 832923 | Zbl 0593.05006
- ,[34] Liquid-vapor phase transitions for systems with finite-range interactions. J. Statist. Phys., 94 (1999), 955-1025. | MR 1694123 | Zbl 1012.82004
- - ,[35] Rigorous treatment of the Van der Waals-Maxwell theory of the liquid vapour transition. J. Math. Phys., 7 (1966), 98-113. | MR 187835 | Zbl 0938.82520
- ,[36] Statistical mechanics of unbounded spins. Comm. Math. Phys., 50 (1976), 195-218. | MR 446251
- ,[37] 12 (Springer-Verlag, Berlin, 1958). | MR 135534
, Theory of Real Gases, Handbuch der Physik,[38] | MR 674819
- , Statistical Mechanics, New York, John Wiley and Sons (1940).[39] Phenomenon of Phase Separation at Low Temperatures in Certain Lattice Models of a Gas. Soviet Physics Doklady, 12 (1968), 688.
- ,[40] Un esempio di Gamma convergenza. Boll.Un. Mat.Ital. B (5), 14 (1977), 285-299. | MR 445362
- ,[41] Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys., 3 (1971), 211-236. | MR 293957 | Zbl 0938.82521
- ,[42] Abstract cluster expansion with applications to statistical mechanical systems. J. of Math. Phys., 50 (2009), 053-509. | MR 2531305 | Zbl 1187.82009
- ,[43] | MR 2460018 | Zbl 1156.82001
, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Heidelberg: Springer, Theoretical and Mathematical Physics (2008).[44] Cluster expansion in the canonical ensemble. Submitted to Commun. Math. Phys. | MR 2993917 | Zbl 1260.82057
- ,[45] The ground state for soft disks. J. Statist. Phys., 26 (1981), 365-373. | MR 643714
,[46] | MR 1747792 | Zbl 0177.57301
, Statistical Mechanics: rigorous results, World Scientific, Imperial College Press, 1969.[47] | MR 691854
, Theory of phase transitions: rigorous results. Akademiai Kiadó. Budapest (1982).[48] 10 (1998), 4387.
, J. Phys., Condens. Matter,[49] A proof of crystallization in two dimensions. Comm. Math. Phys., 262 (2006), 209-236. | MR 2200888 | Zbl 1113.82016
,[50] Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. arXiv:0909.0927v1 [math.AP] (2009). | MR 2898772 | Zbl 1379.74002
- - ,[51] A short course on the Pirogov-Sinai theory. Rend. Mat. Appl., 18 (1998), 411-486. | MR 1686840 | Zbl 0927.60087
,