Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
Ambrosio, Luigi ; Gigli, Nicola ; Savarè, Giuseppe
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 575-629 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2012-10-01
@article{BUMI_2012_9_5_3_575_0,
     author = {Luigi Ambrosio and Nicola Gigli and Giuseppe Savar\`e},
     title = {Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {575-629},
     zbl = {1288.58016},
     mrnumber = {3051737},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_3_575_0}
}
Ambrosio, Luigi; Gigli, Nicola; Savarè, Giuseppe. Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 575-629. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_3_575_0/

[1] Ambrosio, L. - Gigli, N., User's guide to optimal transport theory, to appear. | MR 3050280

[2] Ambrosio, L. - Gigli, N. - Mondino, A. - Savaré, G. - Rajala, T., work in progress (2012).

[3] Ambrosio, L. - Gigli, N. - Savaré, G., Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008. | MR 2401600 | Zbl 1145.35001

[4] Ambrosio, L. - Gigli, N. - Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Arxiv 1106.2090, (2011), 1-74. | MR 3060497

[5] Ambrosio, L. - Gigli, N. - Savaré, G. , Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Arxiv 1111.3730, (2011), 1-28. | MR 3090143

[6] Ambrosio, L. - Gigli, N. - Savaré, G. , Metric measure spaces with Riemannian Ricci curvature bounded from below, Arxiv 1109.0222, (2011), 1-60. | MR 3205729

[7] Ambrosio, L. - Rajala, T., Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces, To appear on Ann. Mat. Pura Appl. (2012). | MR 3158838

[8] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | Zbl 0252.47055

[9] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517. | MR 1708448 | Zbl 0942.58018

[10] Daneri, S. - Savaré, G., Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122. | MR 2452882 | Zbl 1166.58011

[11] Fukushima, M., Dirichlet forms and Markov processes, vol. 23 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980. | MR 569058 | Zbl 0422.31007

[12] Gigli, N., On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. | MR 2659681 | Zbl 1200.35178

[13] Gigli, N., On the differential structure of metric measure spaces and applications, Submitted paper, (2012). | MR 3381131 | Zbl 1325.53054

[14] Gigli, N., Optimal maps in non branching spaces with Ricci curvature bounded from below, To appear on Geom. Funct. Anal., (2012). | MR 2984123 | Zbl 1257.53055

[15] Gigli, N. - Kuwada, K. - Ohta, S., Heat flow on Alexandrov spaces, To appear on Comm. Pure Appl. Math., (2012). | MR 3008226

[16] Gigli, N. - Ohta, S.-I., First variation formula in Wasserstein spaces over compact Alexandrov spaces, To appear on Canad. Math. Bull. | MR 2994677 | Zbl 1264.53050

[17] Heinonen, J., Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163-232. | MR 2291675

[18] Heinonen, J. - Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. | MR 1654771 | Zbl 0915.30018

[19] Heinonen, J. - Koskela, P., A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math., 28 (1999), 37-42. | MR 1691958 | Zbl 1015.46020

[20] Koskela, P. - Macmanus, P., Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. | MR 1628655 | Zbl 0918.30011

[21] Kuwada, K., Duality on gradient estimates and wasserstein controls, Journal of Functional Analysis, 258 (2010), 3758-3774. | MR 2606871 | Zbl 1194.53032

[22] Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28 (2007), 85-120. | MR 2267755 | Zbl 1132.60004

[23] Lott, J. - Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991. | MR 2480619 | Zbl 1178.53038

[24] Ohta, S.-I., Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 211-249. | MR 2546027

[25] Ohta, S.-I., Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., 131 (2009), 475-516. | MR 2503990 | Zbl 1169.53053

[26] Ohta, S.-I. - Sturm, K.-T., Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), 1386-1433. | MR 2547978 | Zbl 1176.58012

[27] Petrunin, A., Alexandrov meets lott-villani-sturm, arXiv:1003.5948v1, (2010). | MR 2869253 | Zbl 1247.53038

[28] Rajala, T., Improved geodesics for the reduced curvature-dimension condition in branching metric spaces, Discrete Contin. Dyn. Syst., (2011). to appear. | MR 3007737

[29] Savaré, G. , Gradient flows and evolution variational inequalities in metric spaces, In preparation, (2010).

[30] Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279. | MR 1809341 | Zbl 0974.46038

[31] Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131. | MR 2237206

[32] Villani, C., Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. | MR 2459454 | Zbl 1156.53003

[33] Zhang, H.-C. - Zhu, X.-P., Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom., 18 (2010), 503-553. | MR 2747437 | Zbl 1230.53064