The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).
@article{BUMI_2012_9_5_3_451_0, author = {Salvatore Rionero}, title = {Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {451-468}, zbl = {1282.35073}, mrnumber = {3051732}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_3_451_0} }
Rionero, Salvatore. Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 451-468. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_3_451_0/
[1] Abstract stability theory and applications to hyperbolic equations with time dependent dissipative force fields. Comp. and Math. with Appl., 12A (1986), 541. | MR 841985 | Zbl 0604.35049
,[2] Stability for second order abstract evolution equations. Nonlinear Anal. Theory, Math. Appl., 8, n. 3 (1984), 237. | MR 738009 | Zbl 0541.35007
,[3]
- , Physics and Applications of the Josephson Effect. Wiley-Interscience, New York (1982).[4] Possible new effects in superconductive tunneling. Phys. Lett.1 (1962), 251-253, The discovery of tunneling supercurrents, Rev. Mod. Phys B, 46 (1974), 251-254 and the references therein. 1447, (2000). | Zbl 0103.23703
,[5] Soliton Excitations in Josephson Tunnel Junctions. Phys. Rev. B 25 (1982), 5737-5748.
- - ,[6] Fluxons in Long Josephson Junctions. In: Solitons in Action Proceedings of a workshop sponsored by the Mathematics Division, Army Research Office held at Redstone Arsenal, October 26-27, 1977 (Eds and ). Academic Press, New York, (1978). | MR 641555
,[7] Decay, growth, continuous dependence and uniqueness results in generalized heat conductions theories, Appl. Anal., 38, n. 4 (1990), 231-243. | MR 1116182 | Zbl 0694.35007
- - ,[8] | MR 1317348
, Hydrodynamics, Cambridge University Press, Cambridge (1959).[9] Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl., 35 (1953), 269-290 (in italian). | MR 63932 | Zbl 0051.23801
,[10] Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rational Mech. Anal., 87 (1985), 213-251. | MR 768067 | Zbl 0572.76011
- - ,[11] Wave propagations in rods of Voigt material and visco-elastic materials with three-parameters models, Quart. Appl. Math., 14 (1956), 153-169. | MR 78848 | Zbl 0071.39902
,[12] On some viscoelastic models, Atti Acc. Lincei Rend. Fis., 75 (1983), 1-10. | MR 816808 | Zbl 0606.73034
,[13] Stability for a third order Sine-Gordon equation, Rend. Math. Serie VII, 18 (1998), 347-365. | MR 1659822 | Zbl 0921.35019
- ,[14] Stability and attractivity for a class of dissipative phenomena. Rend. Met. Serie VII, vol 21 (2000), 191-206. | MR 1884942 | Zbl 1052.35036
- ,[15] Global Stability properties for a class of dissipative phenomena via one or several Liapunov functionals, Nonlinear Dyn. Sys. Theory, 5 (2005), 9-38. | MR 2163509 | Zbl 1076.35015
- ,[16] Stability Properties for Some Non-autonomous Dissipative Phenomena Proved by Families of Liapunov functionals, Nonlinear Dyn. Sys. Theory, 9, n. 3 (2009), 249-262. | MR 2895584 | Zbl 1195.35047
- ,[17] A rigorous reduction of the -stability of the solutions to a nonlinear binary reaction-diffusion system of O.D.Es to the stability of the solutions to a linear binary system of O.D.Es. J.M.A.A., 310 (2006), 372-392. | MR 2227911
,[18] stability analysis for a Lotka-Volterra reaction-diffusion system of P.D.Es., IMA J.Appl. Math., 72, n. 5 (2007), 540-555. | MR 2361568 | Zbl 1160.35032
- , Cross-diffusion influence on the nonlinear -[19] Introduction to the theory of stability. Springer text in Appl. Math V. 24 (1997). | MR 1418401
,[20] | MR 1396085 | Zbl 0862.35001
- , Qualitative estimates for Partial Differential Equations: an introduction. Boca Raton, Florida: CRC Press, (1996).[21] Stability-Instability criteria for non-autonomous systems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, s. 9, Mat. Appl., 20, n. 4 (2009), 347- 367. | MR 2550850 | Zbl 1188.34067
,[22] On the nonlinear stability of nonautonomous binary systems. Nonlinear Analysis: Theory, Methods and Applications (2011). | MR 2870922 | Zbl 1251.37026
,[23] 133, Chapman-Hall/CRC, (2004). | MR 2088362
, Nonlinear Evolution Equations. Monographs and Surveys in Pure Applied Mathematics,