We consider the equation where , () and (Condition (2) guarantees correct solvability of (1) in class , .) Let be a solution of (1) in class , , and some non-negative and continuous function in . We find minimal additional requirements to under which for a given there exists an absolute positive constant such that the following inequality holds:
@article{BUMI_2012_9_5_2_423_0, author = {N. A. Chernyavskaya and L. A. Shuster}, title = {Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {423-448}, zbl = {1260.34063}, mrnumber = {2977257}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_423_0} }
Chernyavskaya, N. A.; Shuster, L. A. Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 423-448. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_423_0/
[1] Weighted estimates for solutions of a Sturm-Liouville equation in the space , to appear in Proc. Royal Soc. Edinburgh. | MR 2855893 | Zbl 1235.34107
- - ,[2] On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. | MR 1025660 | Zbl 0702.34053
- ,[3] Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. | MR 1625725 | Zbl 0918.34032
- ,[4] Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. | MR 1760676 | Zbl 0959.34019
- ,[5] A criterion for correct solvability of the Sturm-Liouvile equation in ; Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. | MR 1873778 | Zbl 0994.34014
- ,[6] Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. | MR 1911203 | Zbl 1072.32001
- ,[7] Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. | MR 2229446 | Zbl 1122.34021
- ,[8] An asymptotic majorant for solutions of Sturm- Liouville equations in , Proc. Edinb. Math. Soc., 50 (2007), 87-114. | MR 2294006 | Zbl 1156.34018
- ,[9] Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. | MR 2338644 | Zbl 1134.34029
- ,[10] A criterion for correct solvability in of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. | MR 2520380 | Zbl 1188.34036
- ,[11] Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. | MR 2951737 | Zbl 1265.34135
- ,[12] | MR 140802 | Zbl 0099.29504
, Partial Differential Equations, John Wiley & Sons, New York, 1962.[13] Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. | MR 871993
- ,[14] | MR 950172 | Zbl 0651.46037
- , Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988.[15] Properties of a Sturm-Liouville operator in , Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. | MR 1089974
,[16] On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. | MR 499422
,[17] A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. | MR 534299 | Zbl 0425.47029
,