Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
Chernyavskaya, N. A. ; Shuster, L. A.
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 423-448 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider the equation -y′′(x)+q(x)y(x)=f(x),x, where fLp(), p[1,] (L():=C()) and 0qL1loc();a>0:infxx-ax+aq(t)dt>0, (Condition (2) guarantees correct solvability of (1) in class Lp(), p[1,].) Let y be a solution of (1) in class Lp(), p[1,], and θ some non-negative and continuous function in . We find minimal additional requirements to θ under which for a given p[1,] there exists an absolute positive constant c(p) such that the following inequality holds: supxθ(x)|y(x)|c(p)fLp()  fLp().

Publié le : 2012-06-01
@article{BUMI_2012_9_5_2_423_0,
     author = {N. A. Chernyavskaya and L. A. Shuster},
     title = {Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {423-448},
     zbl = {1260.34063},
     mrnumber = {2977257},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_423_0}
}
Chernyavskaya, N. A.; Shuster, L. A. Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 423-448. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_423_0/

[1] Chernyavskaya, N. - El-Natanov, N. - Shuster, L., Weighted estimates for solutions of a Sturm-Liouville equation in the space L1(), to appear in Proc. Royal Soc. Edinburgh. | MR 2855893 | Zbl 1235.34107

[2] Chernyavskaya, N. - Shuster, L., On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. | MR 1025660 | Zbl 0702.34053

[3] Chernyavskaya, N. - Shuster, L., Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. | MR 1625725 | Zbl 0918.34032

[4] Chernyavskaya, N. - Shuster, L., Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. | MR 1760676 | Zbl 0959.34019

[5] Chernyavskaya, N. - Shuster, L., A criterion for correct solvability of the Sturm-Liouvile equation in Lp(); Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. | MR 1873778 | Zbl 0994.34014

[6] Chernyavskaya, N. - Shuster, L., Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. | MR 1911203 | Zbl 1072.32001

[7] Chernyavskaya, N. - Shuster, L., Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. | MR 2229446 | Zbl 1122.34021

[8] Chernyavskaya, N. - Shuster, L., An asymptotic majorant for solutions of Sturm- Liouville equations in Lp(), Proc. Edinb. Math. Soc., 50 (2007), 87-114. | MR 2294006 | Zbl 1156.34018

[9] Chernyavskaya, N. - Shuster, L., Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. | MR 2338644 | Zbl 1134.34029

[10] Chernyavskaya, N. - Shuster, L., A criterion for correct solvability in Lp() of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. | MR 2520380 | Zbl 1188.34036

[11] Chernyavskaya, N. - Shuster, L., Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. | MR 2951737 | Zbl 1265.34135

[12] Courant, R., Partial Differential Equations, John Wiley & Sons, New York, 1962. | MR 140802 | Zbl 0099.29504

[13] Davies, E. B. - Harrell, E. M., Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. | MR 871993

[14] Mynbaev, K. - Otelbaev, M., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. | MR 950172 | Zbl 0651.46037

[15] Oinarov, R., Properties of a Sturm-Liouville operator in Lp, Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. | MR 1089974

[16] Otelbaev, M., On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. | MR 499422

[17] Otelbaev, M., A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. | MR 534299 | Zbl 0425.47029