We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.
@article{BUMI_2012_9_5_2_387_0, author = {G. Calvaruso}, title = {Three-Dimensional Paracontact Walker Structures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {387-403}, zbl = {1264.53036}, mrnumber = {2977255}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_387_0} }
Calvaruso, G. Three-Dimensional Paracontact Walker Structures. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 387-403. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_387_0/
[1] A classification of 3-dimensional contact metric manifolds with , Kodai Math. J. 13 (1990), 391-401. | MR 1078554
- - ,[2] Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. | MR 2384316 | Zbl 1112.53051
,[3] Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. | MR 2338519 | Zbl 1126.53044
,[4] Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. | MR 3020703 | Zbl 1273.53020
,[5] Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. | MR 2645904 | Zbl 1193.53146
- ,[6] On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. | MR 2470138 | Zbl 1180.53070
- ,[7] Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. | MR 2670091 | Zbl 1200.53071
- ,[8] Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. | MR 2125237 | Zbl 1068.53049
- - ,[9] Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. | MR 1459412 | Zbl 0948.53027
- ,[10] On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry 77-87, Shaker Verlag, Aachen, 2008. | MR 2603188 | Zbl 1161.53353
- - - ,[11] Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. | MR 800077
- ,[12] Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. | MR 805088 | Zbl 0576.53024
- ,[13] Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. | MR 48893 | Zbl 0046.15601
,[14] | MR 719023
, Semi-Riemannian Geometry, New York: Academic Press, 1983.[15] Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. | MR 1171140 | Zbl 0752.53036
,[16] Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. | MR 35085 | Zbl 0036.38303
,[17] Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. | MR 2520029 | Zbl 1177.53031
,