Three-Dimensional Paracontact Walker Structures
Calvaruso, G.
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 387-403 / Harvested from Biblioteca Digitale Italiana di Matematica

We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.

Publié le : 2012-06-01
@article{BUMI_2012_9_5_2_387_0,
     author = {G. Calvaruso},
     title = {Three-Dimensional Paracontact Walker Structures},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {387-403},
     zbl = {1264.53036},
     mrnumber = {2977255},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_387_0}
}
Calvaruso, G. Three-Dimensional Paracontact Walker Structures. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 387-403. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_387_0/

[1] Blair, D. E. - Koufogiorgos, T. - Sharma, R., A classification of 3-dimensional contact metric manifolds with Qϕ=ϕQ, Kodai Math. J. 13 (1990), 391-401. | MR 1078554

[2] Calvaruso, G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. | MR 2384316 | Zbl 1112.53051

[3] Calvaruso, G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. | MR 2338519 | Zbl 1126.53044

[4] Calvaruso, G., Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. | MR 3020703 | Zbl 1273.53020

[5] Calvaruso, G. - De Leo, B., Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. | MR 2645904 | Zbl 1193.53146

[6] Calvaruso, G. - Kowalski, O., On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. | MR 2470138 | Zbl 1180.53070

[7] Calvaruso, G. - Perrone, D., Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. | MR 2670091 | Zbl 1200.53071

[8] Chaichi, M. - García-Río, E. - Vázquez-Abal, M. E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. | MR 2125237 | Zbl 1068.53049

[9] Cordero, L. A. - Parker, P. E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. | MR 1459412 | Zbl 0948.53027

[10] García-Río, E. - Haji-Badali, A. - Vázquez-Abal, M. E. - Vázquez-Lorenzo, R., On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry 77-87, Shaker Verlag, Aachen, 2008. | MR 2603188 | Zbl 1161.53353

[11] Kaneyuki, S. - Konzai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. | MR 800077

[12] Kaneyuki, S. - Williams, F.L., Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. | MR 805088 | Zbl 0576.53024

[13] Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. | MR 48893 | Zbl 0046.15601

[14] O'Neill, B., Semi-Riemannian Geometry, New York: Academic Press, 1983. | MR 719023

[15] Rahmani, S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. | MR 1171140 | Zbl 0752.53036

[16] Walker, A. G., Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. | MR 35085 | Zbl 0036.38303

[17] Zamkovoy, S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. | MR 2520029 | Zbl 1177.53031