Bennett, DeVore and Sharpley introduced the space weak in 1981 and studied its relationship with functions of bounded mean oscillation. Here we characterize the weak in measure spaces without using the decreasing rearrangement of a function. Instead, we use exponential estimates for the distribution function. In addition, we consider a localized version of the characterization that leads to a new characterization of BMO.
@article{BUMI_2012_9_5_2_369_0, author = {Daniel Aalto}, title = {Weak $L^\infty$ and BMO in Metric Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {369-385}, zbl = {1256.46013}, mrnumber = {2977254}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_369_0} }
Aalto, Daniel. Weak $L^\infty$ and BMO in Metric Spaces. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 369-385. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_369_0/
[1] The discrete maximal operator in metric spaces, J. Anal. Math., 111 (2010). | MR 2747071 | Zbl 1210.42029
- ,[2] A note on spaces and Sobolev embeddings, Indiana Univ. Math. J., 52, 5 (2003), 1215-1230. | MR 2010324 | Zbl 1098.46023
- - ,[3] Weak- and BMO, Ann. of Math. (2), 113 (1981), 601-611. | MR 621018
- - ,[4] 129 of Pure and Applied Mathematics, Academic Press Inc. (Boston, MA, 1988). | MR 928802 | Zbl 0647.46057
- , Interpolation of operators, vol.[5] Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7), 7 (1987), 3-4 (1988), 273-279. | MR 985999 | Zbl 0717.42023
- ,[6] Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, 242 (Springer-Verlag, Berlin, 1971), Étude de certaines intégrales singulières. | MR 499948 | Zbl 0224.43006
- ,[7] | MR 1800917 | Zbl 0985.46008
, Lectures on analysis on metric spaces, Universitext (Springer-Verlag, New York, 2001).[8] 4 of Lecture Notes of the Unione Matematica Italiana, (Springer, Berlin, 2007). | MR 2363526 | Zbl 1133.42035
, Mean oscillations and equimeasurable rearrangements of functions, vol.[9] Generalized Poincaré inequalities: sharp self-improving properties, Internat. Math. Res. Notices, 2 (1998), 101-116. | MR 1604816
- ,[10] An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc., 130 (2002), 555-563. | MR 1862137 | Zbl 0990.46022
- ,[11] BMO for nondoubling measures, Duke Math. J., 102, 3 (2000), 533-565. | MR 1756109
- - - ,[12] On sharp higher order Sobolev embeddings, Commun. Contemp. Math., 6, 3 (2004), 495-511. | MR 2068850 | Zbl 1108.46029
- ,[13] Interpolation à la Marcinkiewicz, Rev. Un. Mat. Argentina, 25 (1970/71), 363-377. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. | MR 370169
,