Weak L and BMO in Metric Spaces
Aalto, Daniel
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 369-385 / Harvested from Biblioteca Digitale Italiana di Matematica

Bennett, DeVore and Sharpley introduced the space weak L in 1981 and studied its relationship with functions of bounded mean oscillation. Here we characterize the weak L in measure spaces without using the decreasing rearrangement of a function. Instead, we use exponential estimates for the distribution function. In addition, we consider a localized version of the characterization that leads to a new characterization of BMO.

Publié le : 2012-06-01
@article{BUMI_2012_9_5_2_369_0,
     author = {Daniel Aalto},
     title = {Weak $L^\infty$ and BMO in Metric Spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {369-385},
     zbl = {1256.46013},
     mrnumber = {2977254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_369_0}
}
Aalto, Daniel. Weak $L^\infty$ and BMO in Metric Spaces. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 369-385. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_369_0/

[1] Aalto, D. - Kinnunen, J., The discrete maximal operator in metric spaces, J. Anal. Math., 111 (2010). | MR 2747071 | Zbl 1210.42029

[2] Bastero, J. - Milman, M. - Ruiz, B. F. J., A note on L(,q) spaces and Sobolev embeddings, Indiana Univ. Math. J., 52, 5 (2003), 1215-1230. | MR 2010324 | Zbl 1098.46023

[3] Bennett, C. - Devore, R. A. - Sharpley, R., Weak-L and BMO, Ann. of Math. (2), 113 (1981), 601-611. | MR 621018

[4] Bennett, C. - Sharpley, R., Interpolation of operators, vol. 129 of Pure and Applied Mathematics, Academic Press Inc. (Boston, MA, 1988). | MR 928802 | Zbl 0647.46057

[5] Chiarenza, F. - Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7), 7 (1987), 3-4 (1988), 273-279. | MR 985999 | Zbl 0717.42023

[6] Coifman, R. R. - Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, 242 (Springer-Verlag, Berlin, 1971), Étude de certaines intégrales singulières. | MR 499948 | Zbl 0224.43006

[7] Heinonen, J., Lectures on analysis on metric spaces, Universitext (Springer-Verlag, New York, 2001). | MR 1800917 | Zbl 0985.46008

[8] Korenovskii, A., Mean oscillations and equimeasurable rearrangements of functions, vol. 4 of Lecture Notes of the Unione Matematica Italiana, (Springer, Berlin, 2007). | MR 2363526 | Zbl 1133.42035

[9] Macmanus, P. - Pérez, C., Generalized Poincaré inequalities: sharp self-improving properties, Internat. Math. Res. Notices, 2 (1998), 101-116. | MR 1604816

[10] Malý, J. - Pick, L., An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc., 130 (2002), 555-563. | MR 1862137 | Zbl 0990.46022

[11] Mateu, J. - Mattila, P. - Nicolau, A. - Orobitg, J., BMO for nondoubling measures, Duke Math. J., 102, 3 (2000), 533-565. | MR 1756109

[12] Milman, M. - Pustylnik, E., On sharp higher order Sobolev embeddings, Commun. Contemp. Math., 6, 3 (2004), 495-511. | MR 2068850 | Zbl 1108.46029

[13] Rivière, N. M., Interpolation à la Marcinkiewicz, Rev. Un. Mat. Argentina, 25 (1970/71), 363-377. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. | MR 370169