In this paper we prove a -convergence result for time-depending variational functionals in a space-time Carnot group arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in is a critical point of a suitable functional that is in turn a -limit of a sequence of analogous Riemannian functionals.
@article{BUMI_2012_9_5_2_337_0, author = {Annalisa Baldi and Bruno Franchi}, title = {Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {337-355}, zbl = {1254.35229}, mrnumber = {2977252}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_337_0} }
Baldi, Annalisa; Franchi, Bruno. Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 337-355. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_337_0/
[1] Differential forms in Carnot groups: a -convergence approach, Calc. Var. Partial Differential Equations, 43 (1) (2012), 211-229. | MR 2886116 | Zbl 1269.58001
- ,[2] Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012.
- ,[3] Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (5) (2010), 1555-1607. | MR 2592503 | Zbl 1184.43007
- - - ,[4] Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 21-40. | MR 2605146
- - ,[5] | MR 2363343 | Zbl 1128.43001
- - , Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.[6] 1285. Hermann, Paris, 1960. | MR 271276 | Zbl 0199.35203
, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No.[7] 8, Birkhäuser Boston Inc., Boston, MA, 1993. | MR 1201152 | Zbl 0816.49001
, An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications,[8] 153, Springer-Verlag New York Inc., New York, 1969. | MR 257325
, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band[9] 28 of Mathematical Notes. Princeton University Press, Princeton, N.J. (1982). | MR 657581
- , Hardy spaces on homogeneous groups, volume[10] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (3) (2003), 421-466. | MR 1984849 | Zbl 1064.49033
- - ,[11] Wave and Maxwell's Equations in Carnot Groups, Commun. Contemp. Math., to appear, | MR 2972522 | Zbl 1251.35175
- ,[12] Faraday's form and Maxwell's equations in the Heisenberg group, Milan J. Math., 77 (2009), 245-270. | MR 2578879 | Zbl 1205.43006
- ,[13] Models for free nilpotent Lie algebras, J. Algebra, 135 (1) (1990), 177-191. | MR 1076084 | Zbl 0717.17006
- ,[14] Wave kernels related to second-order operators, Duke Math. J., 114 (2) (2002), 329-386. | MR 1921073 | Zbl 1072.35130
- - ,[15] Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math. (Birkhäuser, Basel, 1996), 79-323. | MR 1421823 | Zbl 0864.53025
,[16] | MR 404822
, Linear partial differential operators, Springer Verlag, Berlin, 1976.[17] Propagation for the wave group of a positive subelliptic second-order differential operator. In Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press (Boston, MA, 1986), 181-192. | MR 925249
,[18] Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math., 329 (11) (1999), 985-990. | MR 1733906 | Zbl 0982.53029
,[19] Around heat decay on forms and relations of nilpotent Lie groups, In Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 19 of Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 2001. | MR 1909080 | Zbl 1035.58021
,[20] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about AI-weights, Rev. Mat. Iberoamericana, 12 (2) (1996), 337-410. | MR 1402671 | Zbl 0858.46017
,[21]
- , Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001.