We consider the initial boundary value problem for the 3D Navier-Stokes equations under a slip type boundary condition. Roughly speaking, we are concerned with regularity results, up to the boundary, under suitable assumptions on the directions of velocity and vorticity. Our starting point is a recent, interesting, result obtained by Berselli and Córdoba concerning the ``near orthogonal case''. We also consider a ``near parallel case''.
@article{BUMI_2012_9_5_2_225_0, author = {H. Beir\~ao da Veiga}, title = {Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {225-232}, zbl = {1256.35049}, mrnumber = {2977246}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_2_225_0} }
Beirão da Veiga, H. Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 225-232. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_2_225_0/
[1] Direction of vorticity and regularity up to the boundary. The Lipschitz-continuous case, J. Math. Fluid Mech., DOI: 10.1007/s00021-012-0099-9. | MR 3020905
,[2] On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356. | MR 1870646
- ,[3] Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Equations, 246 (2009), 597-628. | MR 2468730 | Zbl 1155.35067
- ,[4] On the regularity of the solutions to the 3-D Navier-Stokes equations: a remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347 (2009), 613-618. | MR 2532916
- ,[5] Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775- 789. | MR 1254117 | Zbl 0837.35113
- ,[6] Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. (French), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 28-63. | MR 481645 | Zbl 0384.35047
- ,[7] variational inequality for vector fields and Helmholtz-Weyl decomposition in bounded domains, Univ. Math. J., 58 (2009), 1853-1920. | MR 2542982 | Zbl 1179.35147
- ,[8] Mathematical principles of classical fluid mechanics, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitheraus-geber C. Truesdell), pp. 125-263, Springer-Verlag, Berlin, 1959. | MR 108116
,