In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.
@article{BUMI_2012_9_5_1_93_0,
author = {Pengfei Yuan and Shiqing Zhang},
title = {New Periodic Solutions for N-Body Problems with Weak Force Potentials},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {5},
year = {2012},
pages = {93-112},
zbl = {1348.70028},
mrnumber = {2919650},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_93_0}
}
Yuan, Pengfei; Zhang, Shiqing. New Periodic Solutions for N-Body Problems with Weak Force Potentials. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 93-112. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_93_0/
[1] - , Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal., 112 (1990), 339-362. | MR 1077264 | Zbl 0737.70008
[2] - , Closed orbits of fixed energy for a class of N-body problems, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 187-200, Addendum, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 337-338. | MR 1168307 | Zbl 0757.70007
[3] - , Non-collision periodic solutions for a class of symmetric 3-body type problems. Topol. Methods Nonlinear Anal., 3 (1994),197-207. | MR 1281984 | Zbl 0829.70006
[4] - , Periodic solutions for singualr Lagrangian systems, Springer, 1993. | MR 1267225 | Zbl 0785.34032
[5] - , Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. | MR 370183 | Zbl 0273.49063
[6] - - , Periodic solutions with prescribed energy for some Keplerian N-body problems, Ann. Inst. H. P. Poincaré Anal. Nonlinaire, 11 (1994), 613-632. | MR 1310624 | Zbl 0855.70006
[7] - - , Minimization properties of Hill's orbits and applications to some N-body problems, Ann. Inst. H. Poincaré Anal Non Lineaire, 7 (2000), 617-650. | MR 1791880 | Zbl 0977.70006
[8] - , Periodic solutions of Hamiltonian systems of three body type. Ann. Inst. H. Poincaré Anal. Non Lineaire, 8 (1991), 561-649. | MR 1145561 | Zbl 0745.34034
[9] - , Symmetries and noncollision closed orbits for planar N-body-type problems, Nonlinear Anal., 16 (1991), 587-598. | MR 1094320 | Zbl 0715.70016
[10] - - , One-dimensional variational problems, Oxford university press, 1998. | MR 1694383 | Zbl 0915.49001
[11] - - , The fixed energy problem for a class of nonconvex singular Hailtonian systems. J. Differential Equation, 230 (2006), 362- 377. | MR 2270557 | Zbl 1104.37039
[12] , Un criterio di esistenza per i punti critici su variete illimitate, Rend. Acad. Sci. Let. Ist. Lombardo, 112 (1978), 332-336. | MR 581298
[13] , Infinite dimensional Morse theory and multiple solution problems, Birkhauser, 1993. | MR 1196690 | Zbl 0779.58005
[14] , Existence and minimizing properties of vetrograde orbits to the three-body problems with various choices of masses, Annals of Math., 167 (2008), 325-348. | MR 2415377 | Zbl 1170.70006
[15] , Variational methods on periodic and quasi-periodic solutions for the N-body problems, Ergodic theory Dynam. Systems, 23 (2003), 1691-1715. | MR 2032484 | Zbl 1128.70306
[16] , Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, ICM 2002, Vol.3, pp. 279-294, Vol. 1, pp. 641-643. | MR 1957539 | Zbl 1136.70310
[17] - , A remarkable periodic solution of the three body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. | MR 1815704 | Zbl 0987.70009
[18] , Some facts and more questions about the eight, Topological methods, Variational methods and their Appl., ICM 2002 Satellite Conference on Nonlinear functional Anal., edited by , , and , 77-88. | MR 2010643 | Zbl 1205.37076
[19] , Introduction to variational methods and singular lagrangian systems, ICTP Lecture Notes, 1994. | Zbl 0832.70009
[20] , The periodic solutions of N-body type problems, Ann. Inst. H. Poincaré Anal. Nonlineaire, 7 (1990), 477-492. | MR 1138534 | Zbl 0723.70010
[21] - , Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa, 15 (1989), 467-494. | MR 1015804 | Zbl 0692.34050
[22] , Classical solutions of a perturbed N-body system, In Top. Nonlinear Anal, etc. ed. (Birkhauser, 1997), 1-86. | MR 1453887
[23] , Convexity methods in Hamiltonian mechanics, Springer, 1990. | MR 1051888 | Zbl 0707.70003
[24] - , On the existence of collisionless equivariant mini- mizers for the classical n-bodyproblem, Invent. Math., 155 (2004), 305-362. | MR 2031430 | Zbl 1068.70013
[25] - , A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré Anal. Non Lineaire, 6 (1989), 321-330. | MR 1030853 | Zbl 0711.58008
[26] , A minimizing Property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. | MR 502484 | Zbl 0378.58006
[27] , Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | MR 377983 | Zbl 0276.58005
[28] - , Geometric characterizations for variational minimization solutions of the 3-body problems, Act Math. Sinica, 16 (2000), 579-592. | MR 1813454 | Zbl 0980.70009
[29] - , Periodic solutions to some N-body type problems: the fixed energy case. Duke Math. J., 69 (1993), 683-697. | MR 1208817 | Zbl 0807.70009
[30] , How the method of minimization of action avoids singularities, Cel. Mech. and Dyn. Astronomy, 83 (2002), 325-323. | MR 1956531 | Zbl 1073.70011
[31] , Braids in classical gravity, Phys. Rev. Lett., 70 (1993), 3675-3679. | MR 1220207 | Zbl 1050.37522
[32] , The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19- 30. | MR 547524 | Zbl 0417.58007
[33] - , Collisionless periodic solutions to some 3-body problems, Arch. Rational. Mech. Anal., 120 (1992), 305-325. | MR 1185563 | Zbl 0773.70009
[34] , Dynamical properties of the figure eight solution of the three-body problem, In: Contemp. Math., Vol. 292, Amer. Math. Soc., Providence, RI, 2002, 209-228. | MR 1884902 | Zbl 1151.70316
[35] , New families of solutions in N-body problems, In Progr. Math., 201 (2001), 101-115. | MR 1905315 | Zbl 1101.70009
[36] , Multiplicity of periodic solution with prescribed energy to singular dynamical systems. Ann. Inst. H. Poincaré Anal. Nonlinaire, 9 (1992), 597-641. | MR 1198306 | Zbl 0771.34035
[37] , Une caracterisation variationnelle des solutions de Lagrange du problem plan des trois corps, C.R. Acad. Sci. Paris, 332 (2001), 641-644. | MR 1841900 | Zbl 1034.70007
[38] - , A minimizing property of Lagrangian solutions, Acta Math. Sinica, 17 (2001), 497-500. | MR 1852963 | Zbl 0988.70007
[39] - , Variational methods for the choregraphy solution to the three-body problem, Sci. China, 45 (2002), 594-597. | MR 1911174
[40] - - , New periodic solutions for 3-body problems, Cel. Mech., 88 (2004), 365-378. | MR 2054928 | Zbl 1160.70325
[41] , Weakly differentiable functions, Springer, 1989. | MR 1014685 | Zbl 0692.46022