Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals
Biscari, Paolo ; Turzi, Stefano
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 81-91 / Harvested from Biblioteca Digitale Italiana di Matematica

This paper deals with the detailed structure of the order-parameter field both close and far from a moving singularity in nematic liquid crystals. We put forward asymptotic expansions that allow to extract from the exact solution the necessary analytical details, at any prescribed order. We also present a simple uniform approximation, which captures the qualitative features of the exact solution in all the domain. This paper is dedicated to the memory of Carlo Cercignani, a master who will be never praised enough for both his scientific achievements and the way he taught how research is to be conducted.

Publié le : 2012-02-01
@article{BUMI_2012_9_5_1_81_0,
     author = {Paolo Biscari and Stefano Turzi},
     title = {Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {81-91},
     zbl = {1260.82082},
     mrnumber = {2919649},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_81_0}
}
Biscari, Paolo; Turzi, Stefano. Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 81-91. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_81_0/

[1] Mermin, N. D., The topological theory of defects in ordered media, Rev. Mod. Phys., 51 (1979), 591-648. | MR 541885

[2] Kléman, M., Defects in liquid crystals, Rep. Prog. Phys., 52 (1989), 555-654. | MR 1000548

[3] Biscari, P. - Guidone-Peroli, G., A hierarchy of defects in biaxial nematics, Commun. Math. Phys., 186 (1997), 381-392. | MR 1462769 | Zbl 0880.76006

[4] Guidone-Peroli, G. - Virga, E. G., Annihilation of point defects in nematic liquid crystals, Phys. Rev. E, 54 (1996), 5235-5241. | MR 1601519

[5] Biscari, P. - Guidone-Peroli, G. - Virga, E. G., A statistical study for evolving arrays of nematic point defects, Liquid Crystals, 26 (1999), 1825-1832. | MR 1601519

[6] Guidone-Peroli, G. - Virga, E. G., Nucleation of topological dipoles in nematic liquid crystals, Commun. Math. Phys., 200 (1999), 195-210. | MR 1671924 | Zbl 0917.76005

[7] Ryskin, G. - Kremenetsky, M., Drag force on a line defect moving through an otherwise undisturbed field: Disclination line in a nematic liquid crystal, Phys. Rev. Lett., 67 (1991), 1574-1577.

[8] Kats, E. I. - Lebedev, V. V. - Malinin, S. V., Disclination motion in liquid crystalline films, J. Exp. Theor. Phys., 95 (2002), 714-727.

[9] Biscari, P. - Sluckin, T. J., Field-induced motion of nematic disclinations, SIAM J. Appl. Math., 65 (2005), 2141-2157. | MR 2177743 | Zbl 1086.76002

[10] Svenšek, D. - Žumer, S., Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals, Phys. Rev. E, 66 (2002), 021712.

[11] Blanc, C. - Svenšek, D. - Žumer, S. - Nobili, M., Dynamics of nematic liquid crystal disclinations: The role of the backflow, Phys. Rev. Lett., 95 (2005), 097802.

[12] Biscari, P. - Sluckin, T. J., A perturbative approach to the backflow dynamics of nematic defects, Euro. J. Appl. Math. 23 (2012), 181-200. | MR 2873031 | Zbl 1235.76009

[13] Biscari, P. - Guidone-Peroli, G. - Sluckin, T. J., The topological microstructure of defects in nematic liquid crystals, Mol. Cryst. Liq. Cryst., 292 (1997), 91-101.

[14] Bender, C. - Orszag, S., Advanced Mathematical Methods for Scientists and Engineers, Springer-Verlag, New York (1999). | MR 538168 | Zbl 0938.34001

[15] Brezis, H. - Coron, J. M. - Lieb, E., Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705. | MR 868739 | Zbl 0608.58016

[16] Abramowitz, M. - Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications (1965). | MR 1225604