Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups
Altomare, Francesco ; Raşa, Ioan
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 1-17 / Harvested from Biblioteca Digitale Italiana di Matematica

We are mainly concerned with the asymptotic behaviour of both discrete and continuous semigroups of Markov operators acting on the space C(X) of all continuous functions on a compact metric space X. We establish a simple criterion under which such semigroups admit a unique invariant probability measure μ on X that determines their limit behaviour on C(X) and on Lp(X;μ). The criterion involves the behaviour of the semigroups on Lipschitz continuous functions and on the relevant Lipschitz seminorms. Finally, we discuss some applications concerning the Kantorovich operators on the hypercube and the Bernstein-Durrmeyer operators with Jacobi weights on [0;1]. As a consequence we determine the limit of the iterates of these operators as well as of their corresponding Markov semigroups whose generators fall in the class of Fleming-Viot differential operators arising in population genetics.

Publié le : 2012-02-01
@article{BUMI_2012_9_5_1_1_0,
     author = {Francesco Altomare and Ioan Ra\c sa},
     title = {Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {1-17},
     zbl = {1268.47013},
     mrnumber = {2919646},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_1_0}
}
Altomare, Francesco; Raşa, Ioan. Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 1-17. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_1_0/

[1] Abel, U. - Berdysheva, E. E., Complete asymptotic expansion for multivariate Bernstein-Durrmeyer operators and quasi-interpolants, J. Approx. Theory 162 (2010), 201-220. | MR 2565833 | Zbl 1189.41012

[2] Albanese, A. - Campiti, M. - Mangino, E., Regularity properties of semigroups generated by some Fleming-Viot type operators, J. Math. Anal. Appl., 335 (2007), 1259-1273. | MR 2346904 | Zbl 1128.47038

[3] Altomare, F. - Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, W. de Gruyter, Berlin, New York, 1994. | MR 1292247 | Zbl 0924.41001

[4] Altomare, F. - Cappelletti Montano, M. - Leonessa, V., On a generalization of Kantorovich operators on simplices and hypercubes, Adv. Pure Appl. Math., 1 (2010), 359-385. | MR 2719372 | Zbl 1202.41018

[5] Altomare, F. - Cappelletti Montano, M. - Leonessa, V., Iterates of multidimensional Kantorovich-type operators and their associated positive C0-semigroups, Studia Univ. Babes-Bolyai, Ser. Math., 56, no. 2 (2011). | MR 2843684 | Zbl 1265.41049

[6] Altomare, F. - Raşa, I., On some classes of diffusion equations and related approximation problems, in: M. G. De Bruin, D. H. Mache and J. Szabados (Eds), Trends and Applications in Constructive Approximation, ISNM, 151 (Birkhäuser Verlag, Basel, 2005), 13-26. | MR 2148705

[7] Bauer, H., Measure and Integration Theory, de Gruyter Studies in Mathematics, 26, W. de Gruyter, Berlin, New York, 2001. | MR 1897176

[8] Berdysheva, E. E. - Jetter, K., Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162 (2010), 576-598. | MR 2600985 | Zbl 1195.41024

[9] Berens, H. - Xu, Y., On Bernstein-Durrmeyer polynomials with Jacobi-weights, in: C. K. Chui (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46. | MR 1090548 | Zbl 0715.41013

[10] Cerrai, S. - Clément, Ph., Schauder estimates for a degenerate second order elliptic operator on a cube, J. Diff. Eq., 242 (2007), 287-321. | MR 2363317 | Zbl 1138.35027

[11] De Vore, R. A. - Lorentz, G. G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303, (Springer-Verlag, Berlin, 1993). | MR 1261635

[12] Eisner, T., Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010. | MR 2681062

[13] Gavrea, I. - Ivan, M., On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372 (2010), 366-368. | MR 2678868 | Zbl 1196.41014

[14] Krengel, U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, W. de Gruyter, Berlin, New York, 1985. | MR 797411

[15] Mache, D. H., Gewichtete Simultanapproximation in der Lp-Metrik durch das Verfahren der Kantorovič Operatoren, Dissertation, Univ. Dortmund, 1991. | Zbl 0760.41011

[16] Mugnolo, D. - Rhandi, A., On the domain of a Fleming-Viot type operator on an Lp-space with invariant measure, to appear in Note Mat., 2012. | MR 2963964 | Zbl 1263.47052

[17] Van Nerven, J., The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996. | MR 1409370

[18] Raşa, I., Asymptotic behaviour and iterates of positive linear operators, Jaen J. Approx., I(2) (2009), 195-204. | MR 2597952

[19] Raşa, I., C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo, Serie II, Suppl., 82 (2010), 123-142. | MR 3307195

[20] Vladislav, T. - Raşa, I., Analiza Numerica: Aproximare, problema lui Cauchy abstracta, proiectori Altomare, Editura Tehnica, Bucuresti, 1999.

[21] Waldron, Sh., A generalized beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122 (2003), 141-150. | MR 1976131 | Zbl 1024.41014

[22] Zhou, D. X., Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19 (1993), 85-100. | MR 1232056 | Zbl 0808.41012