We are mainly concerned with the asymptotic behaviour of both discrete and continuous semigroups of Markov operators acting on the space of all continuous functions on a compact metric space . We establish a simple criterion under which such semigroups admit a unique invariant probability measure on that determines their limit behaviour on and on . The criterion involves the behaviour of the semigroups on Lipschitz continuous functions and on the relevant Lipschitz seminorms. Finally, we discuss some applications concerning the Kantorovich operators on the hypercube and the Bernstein-Durrmeyer operators with Jacobi weights on . As a consequence we determine the limit of the iterates of these operators as well as of their corresponding Markov semigroups whose generators fall in the class of Fleming-Viot differential operators arising in population genetics.
@article{BUMI_2012_9_5_1_1_0, author = {Francesco Altomare and Ioan Ra\c sa}, title = {Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {1-17}, zbl = {1268.47013}, mrnumber = {2919646}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_1_0} }
Altomare, Francesco; Raşa, Ioan. Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 1-17. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_1_0/
[1] Complete asymptotic expansion for multivariate Bernstein-Durrmeyer operators and quasi-interpolants, J. Approx. Theory 162 (2010), 201-220. | MR 2565833 | Zbl 1189.41012
- ,[2] Regularity properties of semigroups generated by some Fleming-Viot type operators, J. Math. Anal. Appl., 335 (2007), 1259-1273. | MR 2346904 | Zbl 1128.47038
- - ,[3] 17, W. de Gruyter, Berlin, New York, 1994. | MR 1292247 | Zbl 0924.41001
- , Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics,[4] On a generalization of Kantorovich operators on simplices and hypercubes, Adv. Pure Appl. Math., 1 (2010), 359-385. | MR 2719372 | Zbl 1202.41018
- - ,[5] Iterates of multidimensional Kantorovich-type operators and their associated positive -semigroups, Studia Univ. Babes-Bolyai, Ser. Math., 56, no. 2 (2011). | MR 2843684 | Zbl 1265.41049
- - ,[6] On some classes of diffusion equations and related approximation problems, in: , and (Eds), Trends and Applications in Constructive Approximation, ISNM, 151 (Birkhäuser Verlag, Basel, 2005), 13-26. | MR 2148705
- ,[7] 26, W. de Gruyter, Berlin, New York, 2001. | MR 1897176
, Measure and Integration Theory, de Gruyter Studies in Mathematics,[8] Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162 (2010), 576-598. | MR 2600985 | Zbl 1195.41024
- ,[9] On Bernstein-Durrmeyer polynomials with Jacobi-weights, in: (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46. | MR 1090548 | Zbl 0715.41013
- ,[10] Schauder estimates for a degenerate second order elliptic operator on a cube, J. Diff. Eq., 242 (2007), 287-321. | MR 2363317 | Zbl 1138.35027
- ,[11] 303, (Springer-Verlag, Berlin, 1993). | MR 1261635
- , Constructive Approximation, Grundlehren der mathematischen Wissenschaften,[12] 209, Birkhäuser Verlag, Basel, 2010. | MR 2681062
, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications,[13] On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372 (2010), 366-368. | MR 2678868 | Zbl 1196.41014
- ,[14] 6, W. de Gruyter, Berlin, New York, 1985. | MR 797411
, Ergodic Theorems, de Gruyter Studies in Mathematics,[15] Gewichtete Simultanapproximation in der -Metrik durch das Verfahren der Kantorovič Operatoren, Dissertation, Univ. Dortmund, 1991. | Zbl 0760.41011
,[16] On the domain of a Fleming-Viot type operator on an -space with invariant measure, to appear in Note Mat., 2012. | MR 2963964 | Zbl 1263.47052
- ,[17] 88, Birkhäuser Verlag, Basel, 1996. | MR 1409370
, The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory: Advances and Applications,[18] Asymptotic behaviour and iterates of positive linear operators, Jaen J. Approx., I(2) (2009), 195-204. | MR 2597952
,[19] -semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo, Serie II, Suppl., 82 (2010), 123-142. | MR 3307195
,[20]
- , Analiza Numerica: Aproximare, problema lui Cauchy abstracta, proiectori Altomare, Editura Tehnica, Bucuresti, 1999.[21] A generalized beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122 (2003), 141-150. | MR 1976131 | Zbl 1024.41014
,[22] Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19 (1993), 85-100. | MR 1232056 | Zbl 0808.41012
,