The 3-Dimensional Oscillon Equation
Di Plinio, Francesco ; Duane, Gregory S. ; Temam, Roger
Bollettino dell'Unione Matematica Italiana, Tome 5 (2012), p. 19-53 / Harvested from Biblioteca Digitale Italiana di Matematica

On a bounded smooth domain Ω3, we consider the generalized oscillon equation ttu(x,t)+ω(t)tu(x,t)-μ(t)Δu(x,t)+V(u(x,t))=0,xΩ3,t with Dirichlet boundary conditions, where ω is a time-dependent damping, μ is a time-dependent squared speed of propagation, and V is a nonlinear potential of critical growth. Under structural assumptions on ω and μ we establish the existence of a pullback global attractor 𝒜=𝒜(t) in the sense of [1]. Under additional assumptions on μ, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.

Publié le : 2012-02-01
@article{BUMI_2012_9_5_1_19_0,
     author = {Francesco Di Plinio and Gregory S. Duane and Roger Temam},
     title = {The 3-Dimensional Oscillon Equation},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5},
     year = {2012},
     pages = {19-53},
     zbl = {1256.35155},
     mrnumber = {2919647},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_19_0}
}
Di Plinio, Francesco; Duane, Gregory S.; Temam, Roger. The 3-Dimensional Oscillon Equation. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 19-53. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_19_0/

[1] Di Plinio, F. - Duane, G. S. - Temam, R., Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. | MR 2725285 | Zbl 1223.37100

[2] Di Plinio, F. - Pata, V., Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. | MR 2486806 | Zbl 1181.35283

[3] Di Plinio, F. - Pata, V. - Zelik, S., On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. | MR 2414334 | Zbl 1149.35015

[4] Farhi, E. - Graham, N. - Khemani, V. et al., An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701.

[5] Farhi, E. - Graham, N. - Guth, A. H. et al., Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019.

[6] Foias, C. - Prodi, G., Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. | MR 223716 | Zbl 0176.54103

[7] Fodor, G. - Forgacs, P. - Horvath, Z. - Lukacs, A., Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003.

[8] Fodor, G. - Forgacs, P. - Mezei, M., Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043.

[9] Grasselli, M. - Pata, V., On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. | MR 2018135 | Zbl 1058.35044

[10] Grasselli, M. - Pata, V., Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. | MR 2106302 | Zbl 1079.35022

[11] Hertzberg, M. P., Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022.

[12] Lions, J.-L. - Prodi, G., Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. | MR 108964 | Zbl 0091.42105

[13] Mandelbrot, B. B., The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982). | MR 665254 | Zbl 0504.28001

[14] Prodi, G., On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466.

[15] Schroeder, M., Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). | MR 1098021

[16] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997). | MR 1441312 | Zbl 0871.35001