On a bounded smooth domain , we consider the generalized oscillon equation with Dirichlet boundary conditions, where is a time-dependent damping, is a time-dependent squared speed of propagation, and is a nonlinear potential of critical growth. Under structural assumptions on and we establish the existence of a pullback global attractor in the sense of [1]. Under additional assumptions on , which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.
@article{BUMI_2012_9_5_1_19_0, author = {Francesco Di Plinio and Gregory S. Duane and Roger Temam}, title = {The 3-Dimensional Oscillon Equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {19-53}, zbl = {1256.35155}, mrnumber = {2919647}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_19_0} }
Di Plinio, Francesco; Duane, Gregory S.; Temam, Roger. The 3-Dimensional Oscillon Equation. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 19-53. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_19_0/
[1] Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. | MR 2725285 | Zbl 1223.37100
- - ,[2] Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. | MR 2486806 | Zbl 1181.35283
- ,[3] On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. | MR 2414334 | Zbl 1149.35015
- - ,[4] An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701.
- - et al.,[5] Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019.
- - et al.,[6] Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. | MR 223716 | Zbl 0176.54103
- ,[7] Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003.
- - - ,[8] Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043.
- - ,[9] On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. | MR 2018135 | Zbl 1058.35044
- ,[10] Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. | MR 2106302 | Zbl 1079.35022
- ,[11] Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022.
,[12] Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. | MR 108964 | Zbl 0091.42105
- ,[13] | MR 665254 | Zbl 0504.28001
, The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982).[14] On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466.
,[15] | MR 1098021
, Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). , Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997).