The Levy-Caccioppoli global inversion theorem is applied to prove the existence and uniqueness of functional solutions for a problem of flow of a viscous incompressible fluid in a porous medium when the viscosity and the thermal conductivity depend on the temperature. A method based on the Abel integral equation, for determining the dependence of the viscosity from the temperature is also proposed.
@article{BUMI_2012_9_5_1_187_0, author = {Giovanni Cimatti}, title = {Functional Solutions for Fluid Flows Through Porous Media}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {187-200}, zbl = {06078979}, mrnumber = {2919656}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_187_0} }
Cimatti, Giovanni. Functional Solutions for Fluid Flows Through Porous Media. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 187-200. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_187_0/
[1] Résolution d'un problém de mécanique, Journal für die reine and angewandte Mathematik, herausgegeben von Crelle, 1, Berlin (1826), 97-101.
,[2]
- , Nonlinear Analysis, Cambridge University Press, 1993.[3] | Zbl 1191.76002
, Dynamics of Fluids in Porous Media, Dover Publications, Inc.New York, 1988.[4] Un principio di inversione per le corrispondenze funzionali, Atti Accad. Naz. Lincei, 16 (1932), 392-400.
,[5] On the functional solutions of a system of partial differential equations relevant in mathematical physics, Rend. Mat. Univ. Parma, 10 (2010), 423-439. | MR 2789450 | Zbl 1216.35022
,[6] Application of the Abel integral equation to an inverse problem in thermoelectricity, Eur. Jour. Appl. Math (to appear). | MR 2558705 | Zbl 1180.80013
,[7] | MR 1095269
- , Abel Integral Equations, Springer-Verlag, Berlin, 1980.[8] Sur les functions de lignes implicites, Bull. Soc. Mat. Fr., 48, 13-27. | MR 1504790 | Zbl 47.0381.01
,[9] | MR 1656781 | Zbl 1268.76001
- , Convection in Porous Media, Springer Verlag, Berlin, 1998.[10] | MR 762825
- , Maximus Principle in Differential Equations, Springer-Verlag, New York, 1963.[11] Su un problema di Abel, Math. Ann.99 (1928), 183-199. | MR 1512447
,[12] | MR 94665
, Integral Equations, Interscience Publishers, London1957.