In [T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra 300 (2006), 10-15] T. W. Müller characterizes the positive integers n satisfying the property that every group of order n is nilpotent of class bounded by a fixed positive integer c. In this article a different proof of the above result will be given.
@article{BUMI_2012_9_5_1_121_0, author = {Alessio Russo}, title = {On Numbers which are Orders of Nilpotent Groups Only}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5}, year = {2012}, pages = {121-124}, zbl = {1251.20026}, mrnumber = {2919652}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2012_9_5_1_121_0} }
Russo, Alessio. On Numbers which are Orders of Nilpotent Groups Only. Bollettino dell'Unione Matematica Italiana, Tome 5 (2012) pp. 121-124. http://gdmltest.u-ga.fr/item/BUMI_2012_9_5_1_121_0/
[1] Definitions of a group and a field by independent postulates, Trans. Math. Soc., 6 (1905), 198-204. | MR 1500706 | Zbl 36.0207.01
,[2] When is the only group of order ?, Elem. Math., 48 (1993), 117-119. | MR 1240612 | Zbl 0829.20035
- ,[3] | MR 224703
, Endliche Gruppen I, 2nd edition, Springer, Berlin (1967).[4] On the uniqueness of the cyclic group of order , Amer. Math. Monthly., 99 (1992), 545-547. | MR 1166004 | Zbl 0779.20011
,[5] An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra, 300 (2006), 10-15. | MR 2228629
,[6] Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math., 10 (1959), 331-343. | MR 114863
,[7] Das schiefe Produkt in der Gruppentheorie, Comm. Math. Helv., 20 (1947), 225-264. | MR 21933
,[8] Die endlichen einstufig nicht nilpotenten Gruppen, Publ. Math. Debrecen, 4 (1956), 303-324. | MR 78998
,[9] | MR 1357169
, A course in the theory of groups, 2nd edition, Springer, New York (1996).