Flows of the form , with maximal monotone, are here formulated as null-minimization problems via Fitzpatrick's theory. By means of De Giorgi's notion of -convergence, we study the compactness and the structural stability of these flows with respect to variations of the source and of the operator .
@article{BUMI_2011_9_4_3_471_0, author = {Augusto Visintin}, title = {On the Structural Stability of Monotone Flows (Running head: Structural Stability)}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {471-479}, zbl = {1243.49015}, mrnumber = {2906771}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_471_0} }
Visintin, Augusto. On the Structural Stability of Monotone Flows (Running head: Structural Stability). Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 471-479. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_471_0/
[1] -convergenza e G-convergenza per problemi non lineari di tipo ellittico. Boll. Un. Mat. Ital. (5), 13-A (1976), 352-362 | MR 487703 | Zbl 0345.49004
- ,[2] | MR 773850 | Zbl 0561.49012
, Variational Convergence for Functions and Operators. Pitman, Boston1984[3] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. | MR 637214 | Zbl 0332.49032
- ,[4] | MR 1201152 | Zbl 0816.49001
, An Introduction to -Convergence. Birkhäuser, Boston1993.[5] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR 448194
- ,[6] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR 1009594 | Zbl 0669.47029
,[7] A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | MR 2447965 | Zbl 1177.35093
,[8] | MR 2458698 | Zbl 1357.49004
, Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009.[9] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976). A1035-A1038. | MR 418609 | Zbl 0345.73037
,[10] The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | MR 2425653 | Zbl 1194.35214
,[11] | MR 2582099 | Zbl 1188.35004
, The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009.[12] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR 2489147 | Zbl 1191.47067
,[13] Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., (9), III (2010), 591-601. | MR 2742783
,[14] Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | MR 2737216 | Zbl 1213.35066
,[15] Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital., (9), IV (2011) (in press). | MR 2906767 | Zbl 1235.35032
,[16] Variational formulation and structural stability of monotone equations. (forthcoming). | MR 3044140 | Zbl 1304.47073
,