In this paper we study a linear version of the sampling Kantorovich type operators in a multivariate setting and we show applications to Image Processing. By means of the above operators, we are able to reconstruct continuous and uniformly continuous signals/images (functions). Moreover, we study the modular convergence of these operators in the setting of Orlicz spaces that allows us to deal the case of not necessarily continuous signals/images. The convergence theorems in - spaces, -spaces and exponential spaces follow as particular cases. Several graphical representations, for the various examples and Image Processing applications are included.
@article{BUMI_2011_9_4_3_445_0, author = {Danilo Costarelli and Gianluca Vinti}, title = {Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {445-468}, zbl = {1234.41018}, mrnumber = {2906770}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_445_0} }
Costarelli, Danilo; Vinti, Gianluca. Approximation by Multivariate Generalized Sampling Kantorovich Operators in the Setting of Orlicz Spaces. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 445-468. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_445_0/
[1] Kantorovich-Type Generalized Sampling Series in the Setting of Orlicz Spaces, Sampling Theory in Signal and Image Processing, 6, No. 1 (2007), 29-52. | MR 2296881 | Zbl 1156.41307
- - - ,[2] Modular Approximation by Sequences of Nonlinear Integral Operators in Musielak-Orlicz Spaces, Atti Sem. Mat. Fis. Univ. Modena, special issue dedicated to Professor Calogero Vinti, suppl., vol. 46, (1998), 403-425. | MR 1645731
- ,[3] Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 9, 2003. | MR 1994699
- - ,[4] Modular convergence in generalized Orlicz spaces for moment type operators, Applicable Analysis, 32 (1989), 265-276. | MR 1030099 | Zbl 0668.42009
- ,[5] A general approach to the convergence theorems of generalized sampling series, Applicable Analysis, 64 (1997), 203-217. | MR 1460079 | Zbl 0878.47016
- ,[6] An Abstract Approach to Sampling Type Operators Inspired by the Work of P. L. Butzer - Part I - Linear Operators, Sampling Theory in Signal and Image Processing, 2 (3) (2003), 271-296. | MR 2090110 | Zbl 1137.41334
- ,[7] The sampling theorem for functions with limited multi-band spectrum I, Zeitschrift für Analysis und ihre Anwendungen, 12 (1993), 511-534. | MR 1245936 | Zbl 0786.30019
- ,[8] A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. | MR 724869 | Zbl 0523.94003
,[9] The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines, SIAM J. Appl. Math., 46 (1986), 299-323. | MR 833479 | Zbl 0617.41020
- - - ,[10] Generalized sampling approximation of multivariate signals: theory and applications, Note di Matematica, 10, Suppl. n. 1 (1990), 173-191. | MR 1193522 | Zbl 0768.42013
- - ,[11] Reconstruction of bounded signal from pseudo-periodic, irregularly spaced samples, Signal Processing, 17 (1989), 1-17. | MR 995998
- ,[12] I, Academic Press, New York-London, 1971. | MR 510857 | Zbl 0217.42603
- , Fourier Analysis and Approximation,[13] Shannon's sampling theorem, Cauchy's integral formula, and related results, In: Anniversary Volume on Approximation Theory and Functional Analysis, (Proc. Conf., Math. Res. Inst. Oberwolfach, Black Forest, July 30-August 6, 1983), , and (Eds.), Internat. Schriftenreihe Numer. Math., 65, Birkhäuser, Basel, 1984, 363-377. | MR 820537
- - ,[14] Approximation of continuous and discountinuous functions by generalized sampling series, J. Approx. Theory, 50 (1987), 25-39. | MR 888050 | Zbl 0654.41004
- - ,[15] The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein, 90 (1988), 1-70. | MR 928745 | Zbl 0633.94002
- - ,[16] Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Review, 34 (1) (1992), 40-53. | MR 1156288 | Zbl 0746.94002
- ,[17] Linear prediction by samples from the past, Advanced Topics in Shannon Sampling and Interpolation Theory, (editor ), Springer-Verlag, New York, 1993. | MR 1221748
- ,[18] Fourier Analysis and the Sampling Theorem, Proc. Ir. Acad., 86, A (1985), 81-108. | MR 821425 | Zbl 0583.42003
- ,[19] | MR 767633 | Zbl 0549.28001
, Real Analysis: Modern techniques and their applications, Wiley and Sons, 1984.[20] Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. | MR 766960 | Zbl 0562.42002
,[21] | Zbl 0872.94010
, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford Univ. Press, Oxford, 1996.[22]
- (Eds.), Sampling Theory in Fourier and Signal Analysis: advanced topics, Oxford Science Publications, Oxford Univ. Press, Oxford, 1999.[23] The Shannon sampling-its various extensions and applications: a tutorial review, Proc. IEEE, 65 (1977), 1565-1596.
,[24] | MR 1474499 | Zbl 0661.46023
, Modular Function Spaces, (Pure Appl. Math.) Marcel Dekker, New York and Basel, 1988.[25] | MR 126722
- , Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. - Groningen - The Netherlands, 1961.[26] | MR 2264389 | Zbl 0874.46022
, Orlicz Spaces and Interpolation, Seminarios de Matematica, IMECC, Campinas, 1989.[27] Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81 (1) (2003), 55-71. | MR 1977761 | Zbl 1019.41013
- ,[28] 1034, 1983. | MR 724434 | Zbl 0557.46020
, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math.,[29] On modular spaces, Studia Math., 28 (1959), 49-65. | MR 101487 | Zbl 0086.08901
- ,[30] | MR 1113700
- , Theory of Orlicz Spaces, Pure and Appl. Math., Marcel Dekker Inc. New York-Basel-Hong Kong, 1991.[31] 250, Marcel Dekker Inc., New York, 2002. | MR 1890178 | Zbl 0997.46027
- , Applications of Orlicz Spaces, Monographs and Textbooks in Pure and applied Mathematics, vol.[32] Approximation by generalized sampling series, Constructive Theory of Functions '84, Sofia (1984), 746-756.
- ,[33] Communication in the presence of noise, Proc. I.R.E., 37 (1949), 10-21. | MR 28549
,[34] A Survey on Recent Results of the Mathematical Seminar in Perugia, inspired by the Work of Professor P. L. Butzer, Result. Math., 34 (1998), 32-55. | MR 1635582 | Zbl 1010.01021
,[35] Approximation in Orlicz spaces for linear integral operators and applications, Rendiconti del Circolo Matematico di Palermo, Serie II, N. 76 (2005), 103-127. | MR 2175550 | Zbl 1136.41306
,[36] A Unifying Approach to Convergence of Linear Sampling Type Operators in Orlicz Spaces, Advances in Differential Equations, Vol. 16, Numbers 5-6 (2011), 573-600. | MR 2816117 | Zbl 1223.41014
- ,