A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems
Rionero, Salvatore
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 393-407 / Harvested from Biblioteca Digitale Italiana di Matematica

A Liapunov functional W, depending - together with the temporal derivative W˙ along the solutions - on the eigenvalues via the system coefficients, is found. This functional is ``peculiar'' in the sense that W is positive definite and simultaneously W˙ is negative definite, if and only if all the eigenvalues have negative real part. An application to a general type of ternary system often encountered in the literature, is furnished.

Publié le : 2011-10-01
@article{BUMI_2011_9_4_3_393_0,
     author = {Salvatore Rionero},
     title = {A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {393-407},
     zbl = {1234.35133},
     mrnumber = {2906768},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_393_0}
}
Rionero, Salvatore. A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 393-407. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_393_0/

[1] Cantrell, R. S. - Cosner, C., Spatial ecology via reaction diffusion equations. Wiley, 2003. | MR 2191264 | Zbl 1059.92051

[2] Flavin, J. N. - Rionero, S., Qualitative estimates for partial differential equations: an introduction. Boca Raton (FL): CRC Press, 1996. | MR 1396085 | Zbl 0862.35001

[3] Rionero, S., Stability of ternary reaction-diffusion dynamical system. To appear on ``Rendiconti di Matematica'' of ``Accademia dei Lincei'' issue 3, 2011. | MR 2847472

[4] Rionero, S., A rigorous reduction of the stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. to the stability of the solutions to a linear binary system of O.D.Es. J.M. A. A., vol. 319 (2006), 372-392. | MR 2227911

[5] Rionero, S., Long time behaviour of three competing species and mututalistic communitites. Asymptotic Methods in Nonlinear Wave phenomenon. World Sci., 2007, 171-185. | MR 2370502 | Zbl 1311.92167

[6] Rionero, S., On the reducibility of the L2-stability of ternary reaction-diffusion systems of P.D.Es. Proceedings Wascom 2009, World Sci., 2010, 321-331. | MR 2762033 | Zbl 1242.35043

[7] Merkin, D. R., Introduction to the theory of stability. Springer texts in Applied Mathematics, vol. 24 (1997). | MR 1418401

[8] Gantmacher, F. R., The theory of matrices. Vol I, AMS, 2000. | MR 1657129

[9] Gantmacher, F. R., Lezioni di Meccanica analitica, Editori Riuniti, Roma1980, (Lektsii po analiticeskoj mechanike, Mir, Moscow).

[10] Prodi, G., Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. | MR 189354 | Zbl 0108.28602

[11] Flavin, J. N. - Rionero, S., Cross-diffusion influence on the nonlinear L2-stability analysis for the Lotka-Volterra reaction-diffusion system of P.D.Es. IMA J.A.M., vol. 72, n. 5 (2007), 540-557. | MR 2361568 | Zbl 1160.35032

[12] Rionero, S., L2-energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Analysis, vol. 70 (2009), 2530-2541. | MR 2499720 | Zbl 1175.34036

[13] Straughan, B., The energy method, stability and nonlinear convection. Springer, 2004 (2nd Edit.). | MR 2003826 | Zbl 1032.76001

[14] Straughan, B., Stability and wave motion in porous media. Springer, 2008. | MR 2433781 | Zbl 1149.76002