A Liapunov functional , depending - together with the temporal derivative along the solutions - on the eigenvalues via the system coefficients, is found. This functional is ``peculiar'' in the sense that is positive definite and simultaneously is negative definite, if and only if all the eigenvalues have negative real part. An application to a general type of ternary system often encountered in the literature, is furnished.
@article{BUMI_2011_9_4_3_393_0, author = {Salvatore Rionero}, title = {A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {393-407}, zbl = {1234.35133}, mrnumber = {2906768}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_393_0} }
Rionero, Salvatore. A Peculiar Liapunov Functional for Ternary Reaction-Diffusion Dynamical Systems. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 393-407. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_393_0/
[1] | MR 2191264 | Zbl 1059.92051
- , Spatial ecology via reaction diffusion equations. Wiley, 2003.[2] | MR 1396085 | Zbl 0862.35001
- , Qualitative estimates for partial differential equations: an introduction. Boca Raton (FL): CRC Press, 1996.[3] Stability of ternary reaction-diffusion dynamical system. To appear on ``Rendiconti di Matematica'' of ``Accademia dei Lincei'' issue 3, 2011. | MR 2847472
,[4] A rigorous reduction of the stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. to the stability of the solutions to a linear binary system of O.D.Es. J.M. A. A., vol. 319 (2006), 372-392. | MR 2227911
,[5] Long time behaviour of three competing species and mututalistic communitites. Asymptotic Methods in Nonlinear Wave phenomenon. World Sci., 2007, 171-185. | MR 2370502 | Zbl 1311.92167
,[6] On the reducibility of the -stability of ternary reaction-diffusion systems of P.D.Es. Proceedings Wascom 2009, World Sci., 2010, 321-331. | MR 2762033 | Zbl 1242.35043
,[7] Introduction to the theory of stability. Springer texts in Applied Mathematics, vol. 24 (1997). | MR 1418401
,[8] I, AMS, 2000. | MR 1657129
, The theory of matrices. Vol[9]
, Lezioni di Meccanica analitica, Editori Riuniti, Roma1980, (Lektsii po analiticeskoj mechanike, Mir, Moscow).[10] Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. | MR 189354 | Zbl 0108.28602
,[11] Cross-diffusion influence on the nonlinear -stability analysis for the Lotka-Volterra reaction-diffusion system of P.D.Es. IMA J.A.M., vol. 72, n. 5 (2007), 540-557. | MR 2361568 | Zbl 1160.35032
- ,[12] -energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Analysis, vol. 70 (2009), 2530-2541. | MR 2499720 | Zbl 1175.34036
, , The energy method, stability and nonlinear convection. Springer, 2004 (2nd Edit.). , Stability and wave motion in porous media. Springer, 2008.