To any maximal monotone operator ( being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function such that On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: here and are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators , , and .
@article{BUMI_2011_9_4_3_363_0, author = {Augusto Visintin}, title = {Structural Stability of Doubly-Nonlinear Flows}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {363-391}, zbl = {1235.35032}, mrnumber = {2906767}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_363_0} }
Visintin, Augusto. Structural Stability of Doubly-Nonlinear Flows. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 363-391. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_363_0/
[1] Doubly nonlinear equations with unbounded operators. Nonlinear Anal., 58 (2004), 591-607. | MR 2078737 | Zbl 1073.34076
- ,[2] Doubly nonlinear periodic problems with unbounded operators. J. Math. Anal. Appl., 292 (2004), 540-557. | MR 2047630 | Zbl 1064.34039
- ,[3] Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J., 7 (1997), 1-17. | MR 1427016 | Zbl 0871.34037
- ,[4] Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations, 231 (2006), 32-56. | MR 2287876 | Zbl 1115.34059
,[5] Quasilinear elliptic-parabolic differential equations. Math. Z., 183 (1983), 311-341. | MR 706391 | Zbl 0497.35049
- ,[6] On the existence of the solution for . J. Fac. Sci. Univ. Tokyo. Sec. IA Math., 26 (1979), 75-96. | MR 539774 | Zbl 0418.35056
,[7] | MR 773850 | Zbl 0561.49012
, Variational Convergence for Functions and Operators. Pitman, Boston1984.[8] Saddle-points and existence-uniqueness for evolution equations. Differential Integral Equations, 6 (1993), 1161-117. | MR 1230489 | Zbl 0813.35026
,[9] Existence theorems for a class of two point boundary problems. J. Differential Equations, 17 (1975), 236-257. | MR 380532 | Zbl 0295.35074
,[10] | MR 390843 | Zbl 0328.47035
, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976.[11] | MR 2582280 | Zbl 1197.35002
, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010.[12] Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. S.I.A.M. J. Math. Anal., 19 (1988), 1032-1056. | MR 957665 | Zbl 0685.35052
- ,[13] A few results on a class of degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 213-249. | MR 1129302 | Zbl 0778.35046
- ,[14] Stefan problems with nonlinear diffusion and convection. J. Differential Equations, 210 (2005), 383-428. | MR 2119989 | Zbl 1075.35112
- ,[15] | MR 348562 | Zbl 0252.47055
, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973.[16] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976) 971-974, and ibid. 1197-1198. | MR 637214 | Zbl 0332.49032
- ,[17] Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal., 15 (2008), 87-104. | MR 2389005 | Zbl 1133.49018
- - ,[18] Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis, 10 (2002), 297-316. | MR 1934748 | Zbl 1033.47036
- ,[19] Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc., 131 (2003), 2379-2383. | MR 1974634 | Zbl 1019.47038
- ,[20] Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), 269-361. | MR 1709116 | Zbl 0935.35056
,[21] Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156 (1999), 93-121. | MR 1701806 | Zbl 0932.35129
- ,[22] On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9 (1992), 181-203. | MR 1170721 | Zbl 0757.34051
,[23] On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. | MR 1070845 | Zbl 0707.34053
- ,[24] | MR 1201152 | Zbl 0816.49001
, An Introduction to -Convergence. Birkhäuser, Boston1993.[25] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. | MR 448194
- ,[26] Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal., 12 (1981), 731-751. | MR 625829 | Zbl 0477.47037
- ,[27] | MR 463993
- , Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974.[28] | Zbl 0053.12203
, Convex Cones, Sets, and Functions. Princeton Univ., 1953.[29] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR 1009594 | Zbl 0669.47029
,[30] On a variant of monotonicity and its application to differential equations. Nonlinear Anal., 22 (1994), 73-80. | MR 1256171 | Zbl 0821.35002
,[31] | MR 636412
- - , Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin 1974.[32] Über eine Klasse nichtlinearer Differentialgleichun- gen im Hilbert-Raum. J. Math. Anal. Appl., 44 (1973), 71-87. | MR 335988
- ,[33] Über eine weitere Klasse nichtlinearer Differential- gleichungen im Hilbert-Raum. Math. Nachr., 57 (1973), 127-140. | MR 336476 | Zbl 0289.34088
- ,[34] A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. | MR 2447965 | Zbl 1177.35093
,[35] | MR 2458698 | Zbl 1357.49004
, Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009.[36] A variational principle for gradient flows. Math. Ann., 330 (2004), 519-549. | MR 2099192 | Zbl 1062.35008
- ,[37] Sur la résolution d'une équation et une inéquation paraboliques non linéaires. J. Funct. Anal., 11 (1972), 77-92. | MR 350207 | Zbl 0251.35055
- ,[38] On a class of nonlinear initial value problems in Hilbert spaces. Math. Nachr., 93 (1979), 21-31. | MR 579840
- ,[39] Uniqueness for nonlinear degenerate problems. Nonlinear Differential Equations Appl., 10 (2003), 287-307. | MR 1994812 | Zbl 1024.35054
- ,[40] On the homogenization of degenerate parabolic equations. Acta Math. Appl. Sinica, 16 (2000), 100-110. | MR 1757328 | Zbl 0957.35076
,[41] A convex representation of maximal monotone operators. J. Nonlinear Convex Anal., 2 (2001), 243-247. | MR 1848704 | Zbl 0999.47037
- ,[42] Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | MR 2128696 | Zbl 1083.47036
- ,[43] Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136 (2008), 873-878. | MR 2361859 | Zbl 1133.47040
- ,[44] Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations. Vol. II ( and , eds.). Elsevier/North-Holland, Amsterdam, (2005), 461-559. | MR 2182832 | Zbl 1120.47062
,[45] On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. | MR 2210284 | Zbl 1061.35182
- ,[46] A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162 (2002), 137-177. | MR 1897379 | Zbl 1012.74054
- - ,[47]
, A History of Thermodynamics. Springer, Berlin2007.[48] Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. | MR 506997 | Zbl 0399.46022
,[49] Homogenization of a nonlinear degenerate parabolic differential equation. Electron. J. Differential Equations, 1 (2001), 19. | MR 1824787 | Zbl 1052.35023
- ,[50] Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207. | MR 1894553 | Zbl 1199.35016
- ,[51] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR 418609 | Zbl 0345.73037
,[52] -contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl., 7 (1997), 537-553. | MR 1476263 | Zbl 0888.35085
,[53] A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. | MR 2059661 | Zbl 1045.47042
,[54] The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., 58 (2004), 855-871. | MR 2086060 | Zbl 1078.47008
,[55] A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (5) (2008), 97-169. | MR 2413674 | Zbl 1183.35164
- - ,[56] | Zbl 1087.35002
, Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel2005.[57] Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst., 18 (2007), 15-38. | MR 2276484 | Zbl 1195.35185
- - ,[58] On some nonlinear evolution equation. Funkcial. Ekvac., 29 (1986), 243-257. | MR 904541 | Zbl 0627.35045
,[59] Compact sets in the space . Ann. Mat. Pura Appl., 146 (1987), 65-96. | MR 916688 | Zbl 0629.46031
,[60] The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. | MR 2425653 | Zbl 1194.35214
,[61] | MR 2582099 | Zbl 1188.35004
, The General Theory of Homogenization. A Personalized Introduction. SpringerBerlin; UMI, Bologna, 2009.[62] | MR 1423808 | Zbl 0882.35004
, Models of Phase Transitions. Birkhäuser, Boston1996.[63] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR 2489147 | Zbl 1191.47067
,[64] Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., III (9) (2010), 591-601. | MR 2742783
,[65] Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. | MR 2737216 | Zbl 1213.35066
,[66] Scale-transformations and homogenization of maximal monotone relations, and applications. (forthcoming). | MR 3086566 | Zbl 1302.35042
,[67] Variational formulation and structural stability of monotone equations. (forthcoming). | MR 3044140 | Zbl 1304.47073
,[68] Structural stability of rate-independent nonpotential flows. (forthcoming). | MR 2983478 | Zbl 1262.35141
,