A Paradox in the Two Envelope Paradox?
Volčič, Aljoša
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 337-345 / Harvested from Biblioteca Digitale Italiana di Matematica

. - We describe accurately the history of the two envelope paradox. We also formulate a new version of SchrÈodinger's paradox which reveals a close connection between the two sorts of paradoxes. Finally, we show that built into the most popular version of the two envelope paradox there is a logical paradox reminiscent of the unexpected hanging paradox.

Publié le : 2011-10-01
@article{BUMI_2011_9_4_3_337_0,
     author = {Aljo\v sa Vol\v ci\v c},
     title = {A Paradox in the Two Envelope Paradox?},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {337-345},
     zbl = {1281.60007},
     mrnumber = {2906765},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_337_0}
}
Volčič, Aljoša. A Paradox in the Two Envelope Paradox?. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 337-345. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_337_0/

[B] Bolobás, B., Littlewood's miscellany, Cambridge University Press, 1986. | MR 872858

[Bl] Blackwell, D., On the translation parameter problem for discrete variables, Ann. Math. Stat., 22 (1951), 391-399. | MR 43418 | Zbl 0043.13802

[C] Chow, T. Y., The Surprise Examination or Unexpected Hanging Paradox, Amer. Math. Monthly, 105, n. 1 (1998), 41-51. | MR 1614002 | Zbl 0917.03001

[E] Ekeland, I., Monty Hall and Probability, Π in the Sky, n. 10, January 2007, 10- 11.

[G] Gardner, M., Aha! Gotcha, W. H. Freeman and Company, 1982. | MR 1132881

[K] Kraïtchik, M., Mathematical recreations. George Allen Unwin ltd, London, 1943.

[L] Littlewood, J. E., A mathematician's Miscellany, London, Methuen Co., 1953. | MR 3363433 | Zbl 0051.00101

[Li] Linzer, E., The Two Envelope Paradox, Amer. Math. Monthly, 101, n. 5, (1994), 417-419. | MR 1272939

[N] Nalebuff, B., PUZZLES, Journal of Economic Perspectives, 2, n. 2 (Spring 1988), 171-181.

[P] Prodi, G., Il paradosso delle buste, Induzioni (1994), 33-63.

[Q] Quine, W. V. O., On a so-called paradox, Mind, 62 (1953), 65-?67.

[S] Székely, G. J., Paradoxes in probability theory and mathematical statistics, Reidel Publishing Company, 1986.

[SV] Snell, J. L. - Vanderbei, R., Three bewitching paradoxes. In: J. L. Snell, (ed.) Topics in contemporary probability and its applications, 355-370. Bocca Raton, CRC Press, 1995. | MR 1410543 | Zbl 0867.60001

[SSS] Samet, D. - Samet, I. - Schmeidler, D., One observation behind Two Envelope Paradox, Amer. Math. Monthly, 111, n. 4 (2004), 347-351. | MR 2057189 | Zbl 1138.00302

[Z] Zabell, S.L., Loss and gain: the exchange paradox. In: J. M. Bernardo, M. H. Degroot, D. V. Lindley and A. F. M. Smith (ed.), Bayesian statistics 3. Proceedings of the third Valencia international meeting, 233-236. Clarendon Press, Oxford, 1988. | MR 1008039