Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions
Appell, J. ; Jesús, Z. ; Mejía, O.
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 321-336 / Harvested from Biblioteca Digitale Italiana di Matematica

In this note we study the nonlinear composition operator fgf in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.

Publié le : 2011-10-01
@article{BUMI_2011_9_4_3_321_0,
     author = {J. Appell and Z. Jes\'us and O. Mej\'\i a},
     title = {Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {321-336},
     zbl = {1229.47086},
     mrnumber = {2906764},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_321_0}
}
Appell, J.; Jesús, Z.; Mejía, O. Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 321-336. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_321_0/

[1] Ambrosetti, A. - Prodi, G., Analisi Non Lineare, Scuola Norm. Sup. Pisa, Pisa 1973.

[2] Ambrosetti, A. - Prodi, G., A Primer of Nonlinear Analysis, Cambridge Univ. Press, Cambridge 1992. | MR 1225101 | Zbl 0781.47046

[3] Appell, J. - Guanda, N. - Merentes, N. - Sánchez, J. L., Some boundedness and continuity properties of nonlinear composition operators: A survey, Comm. Applied Anal., to appear. | MR 2867343 | Zbl 1255.47059

[4] Appell, J. - Guanda, N. - Väth, M., Function spaces with the Matkowski property and degeneracy phenomena for nonlinear composition operators, Fixed Point Theory (Cluj), to appear. | MR 2895691

[5] Appell, J. - Zabrejko, P. P., Remarks on the superposition operator problem in various functions spaces, Complex Variables Elliptic Equ., 55, 8 (2010), 727-737. | MR 2674861 | Zbl 1216.47089

[6] Bourdaud, G. - Lanza De Cristoforis, M. - Sickel, W., Superposition operators and functions of bounded p-variation II, Nonlin. Anal. TMA, 62 (2005), 483-517. | MR 2147980 | Zbl 1090.47050

[7] Bourdaud, G. - Lanza De Cristoforis, M. - Sickel, W., Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer., 22, 2 (2006), 455-487. | MR 2294787 | Zbl 1134.46015

[8] Gelbaum, B. R. - Olmsted, J. M. H., Counterexamples in Analysis, Holden-Day, San Francisco 1964. | MR 169961 | Zbl 0121.28902

[9] Goebel, M. - Sachweh, F., On the autonomous Nemytskij operator in Hölder spaces, Zeitschr. Anal. Anw., 18, 2 (1999), 205-229. | MR 1701350 | Zbl 0941.47053

[10] Jordan, C., Sur la séries de Fourier, C. R. Acad. Sci. Paris, 2 (1881), 228-230.

[11] Josephy, M., Composing functions of bounded variation, Proc. Amer. Math. Soc., 83, 2 (1981), 354-356. | MR 624930 | Zbl 0475.26005

[12] Kannan, R. - Krueger, C. K., Advanced Analysis on the Real Line, Springer, Berlin 1996. | MR 1390758 | Zbl 0855.26001

[13] Marcus, M. - Mizel, V. J., Superposition mappings which operate on Sobolev spaces, Nonlin. Anal. TMA, 2, 2 (1978), 257-258. | MR 531975 | Zbl 0387.46035

[14] Marcus, M. - Mizel, V. J., Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc., 251 (1979), 187-218. | MR 531975 | Zbl 0417.46035

[15] Matkowski, J., Form of Lipschitz operators of substitution in Banach spaces of differentiable functions, Zeszyty Nauk. Politech. Łódz. Mat., 17 (1984), 5-10. | MR 790835 | Zbl 0599.46031

[16] Merentes, N., On the composition operator in AC[a;b], Collect. Math., 42, 1 (1991), 121-127. | MR 1203182 | Zbl 0783.47045

[17] Merentes, N. - Rivas, S., El operador de composición en espacios de funciones con algún tipo de variación acotada, Novena Escuela Venez. Mat., Mérida (Venezuela) 1996.

[18] Merentes, N. - Rivas, S., On the composition operator between spaces BVp[a;b] and BV[a;b], Sci. Math., 1, 3 (1998), 287-292. | MR 1688242

[19] Riesz, F., Untersuchungen über Systeme integrierbarer Funktionen, Math. Annalen, 69 (1910), 449-497. | MR 1511596 | Zbl 41.0383.01

[20] Russell, A. M., An integral representation for a generalised variation of a function, Bull. Austral. Math. Soc., 11 (1974), 225-229. | MR 367130 | Zbl 0279.26008