We show that a class of semilinear boundary value problems possess exactly one positive solution and one negative solution.
@article{BUMI_2011_9_4_3_313_0, author = {Antonio Ambrosetti}, title = {On the Number of Solutions of Some Semilinear Elliptic Problems}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {313-319}, zbl = {1235.35125}, mrnumber = {2906763}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_3_313_0} }
Ambrosetti, Antonio. On the Number of Solutions of Some Semilinear Elliptic Problems. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 313-319. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_3_313_0/
[1] 104, Cambridge Univ. Press, 2006 | MR 2292344 | Zbl 1115.35004
- , Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics No.[2] Sharp nonuniqueness results for some nonlinear problems, J. Nonlin. Anal. TMA, 3-5 (1979), 635-645. | MR 541874
- ,[3] 34, Cambridge Univ. Press, 1993. | MR 1225101 | Zbl 0781.47046
- , A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics No.[4] On the inversion of some differentiable appings with singularities between Banach spaces. Ann. Mat. Pura Appl., 93 (1972), 231-246. | MR 320844 | Zbl 0288.35020
- ,[5] Lectures on Boundary Value Problems of Ambrosetti-Prodi Type, 12th Brazilian Seminar of Analysis, Sao Paulo, Brasil, 1980.
,[6] Positive solutions of semilinear elliptic problems, in Differential equations, Lecture Notes in Math.957Springer, 1982. | MR 679140 | Zbl 0506.35038
,[7] Strict monotonicity of eigenvalues and Unique Continuation, Comm. P.D.E., 17-1 (1993), 339-346. | MR 1151266
- ,[8] Singularity theory and the geometry of a nonlinear elliptic equation, Ann. Sc. Norm. Sup. Pisa, 17 (1990), 1-33. | MR 1074625 | Zbl 0725.35043
,[9] Forced secondary bifurcation in an elliptic boundary value problem, Diff. Int. Eq., 5-4 (1992), 793-804. | MR 1167495 | Zbl 0759.35010
,