In the paper [5] in collaboration with Italo Capuzzo Dolcetta, the use of the Lewy-Stampacchia inequality was the main tool for the study of the G-convergence in unilateral problems with linear differential operators. In this paper we prove a Lewy-Stampacchia inequality for unilateral problems with more general differential operators (quasilinear operators with lower order term having quadratic growth with respect to the gradient) in order to study the G-convergence in unilateral problems with such type of differential operators.
@article{BUMI_2011_9_4_2_275_0, author = {Lucio Boccardo}, title = {Lewy-Stampacchia Inequality in Quasilinear Unilateral Problems and Application to the G-convergence}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {275-282}, zbl = {1234.35115}, mrnumber = {2840608}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_275_0} }
Boccardo, Lucio. Lewy-Stampacchia Inequality in Quasilinear Unilateral Problems and Application to the G-convergence. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 275-282. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_275_0/
[1] On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. non lin. 5 (1988), 347-364. | MR 963104 | Zbl 0696.35042
- - ,[2] Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth, Comm. Pure Appl. Math., 39 (1986), 769-805. | MR 859273 | Zbl 0602.35030
- - ,[3] convergence for quasilinear elliptic equations with quadratic growth, Appl. Math. Opt., 26 (1992), 253-272. | MR 1175481 | Zbl 0795.35008
- - , H-[4] H-convergence for quasilinear elliptic equations, in Composite media and homogenization theory, and ed., World Scientific, 1995. | MR 1145740
- - - ,[5] G-convergenza e problema di Dirichlet unilaterale, Boll. UMI 12 (1975), 115-123. | MR 399988
- ,[6] Existence and uniqueness of solutions of unilateral problems with data, J. Convex Anal., 6 (1999), 195-206. | MR 1713958 | Zbl 0958.47038
- ,[7] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. | MR 980979 | Zbl 0687.35042
- - ,[8] Resultats d'existence pour certains problèmes elliptiques quasi linéaires, Ann. Sc. Norm. Sup. Pisa, 11 (1984), 213-235. | MR 764943 | Zbl 0557.35051
- - ,[9] stimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. | MR 1147866 | Zbl 0785.35033
- - , LI-e[10] Homographic approximations of free boundary problems characterized by elliptic variational inequalities. In Nonlinear partial differential equations and their applications, Collège de France Seminar Vol. III, ed. by and , Research Notes in Math., 70, Pitman, London (1982), 86-128. | MR 670269
- ,[11] On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), 153-188. | MR 247551 | Zbl 0167.11501
- ,[12] The Lewy-Stampacchia inequality for the obstacle problem with quadratic growth in the gradient, Ann. Mat. Pura Appl., 184 (2005), 347-360. | MR 2164262 | Zbl 1105.35041
- ,[13] H-Convergence; in Topics in the Mathematical Modelling of Composite Materials, , , editors, Birkhäuser, Boston (1997), 21-43. | MR 1493039
- ,[14] On the smoothness of solutions of unilateral Dirichlet problems, Boll. Un. Mat. Ital., 8 (1973), 57-67. | MR 390479 | Zbl 0277.35033
- ,[15] Homographic approximation applied to nonlinear elliptic unilateral problems, Rend. Mat. Appl., 17 (1997), 387-402. | MR 1608700 | Zbl 0902.35046
,[16] Homographic approximation for some nonlinear parabolic unilateral problems, J. Convex Anal., 7 (2000), 353-373. | MR 1811685 | Zbl 0972.35059
,[17] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 577-597. | MR 240443
,[18] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. | MR 192177 | Zbl 0151.15401
,