belongs to we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.
@article{BUMI_2011_9_4_2_245_0, author = {Francesca de Marchis}, title = {Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {245-257}, zbl = {1237.81119}, mrnumber = {2840605}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_245_0} }
de Marchis, Francesca. Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 245-257. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_245_0/
[1] A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. | MR 1362165 | Zbl 0840.76002
- - - ,[2] 6, Birkhäuser, Boston, 1993. | MR 1196690 | Zbl 0779.58005
, Infinite dimensional Morse theory and multiple solution problems, PNLDE[3] The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. | MR 1261723
- - ,[4] Prescribing Gaussian curvature on , Acta Math., 159 (1987), 215-259. | MR 908146 | Zbl 0636.53053
- ,[5] Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. | MR 1121147 | Zbl 0768.35025
- ,[6] Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. | MR 1129348
- ,[7] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. | MR 2001443 | Zbl 1032.58010
- ,[8] A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. | MR 296777 | Zbl 0228.58006
,[9] Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. | MR 2475336 | Zbl 1165.35020
,[10] Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. | MR 2671126 | Zbl 1211.58011
,[11] Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. | MR 1712560 | Zbl 0937.35055
- - - ,[12] The differential equation on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. | MR 1491984 | Zbl 0955.58010
- - - ,[13] Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. | MR 2409366 | Zbl 1151.53035
,[14] Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. | MR 2456884 | Zbl 1186.53050
- ,[15] Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. | MR 1019117 | Zbl 0683.70022
- ,[16] Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. | MR 1797146
,[17] Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. | MR 343205 | Zbl 0273.53034
- ,[18] Blow-up analysis for solutions of in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. | MR 1322618 | Zbl 0842.35011
- ,[19] Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. | MR 1673972 | Zbl 0928.35057
,[20] Topological degree for mean field equations on , Duke Math. J., 104 (2000), 501-536. | MR 1781481 | Zbl 0964.35038
,[21] A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. | MR 2232208 | Zbl 1136.35368
,[22] A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. | MR 2363657 | Zbl 1135.58005
,[23] Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. | MR 2483132 | Zbl 1175.53052
,[24] On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. | MR 1664542 | Zbl 0980.46022
- ,[25] | MR 210112
, Algebraic topology, Springer-Verlag, New-York, 1966.[26] On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. | MR 1619043 | Zbl 0912.58046
- ,[27] Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. | MR 1400816 | Zbl 0863.58081
, , Solitons in field theory and nonlinear analysis, Springer, 2001.