Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
de Marchis, Francesca
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 245-257 / Harvested from Biblioteca Digitale Italiana di Matematica

ρ belongs to (8π,4π2) we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.

Publié le : 2011-06-01
@article{BUMI_2011_9_4_2_245_0,
     author = {Francesca de Marchis},
     title = {Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {245-257},
     zbl = {1237.81119},
     mrnumber = {2840605},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_245_0}
}
de Marchis, Francesca. Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 245-257. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_245_0/

[1] Caglioti, E. P. - Lions, P. L. - Marchioro, C. - Pulvirenti, M., A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. | MR 1362165 | Zbl 0840.76002

[2] Chang, K. C., Infinite dimensional Morse theory and multiple solution problems, PNLDE6, Birkhäuser, Boston, 1993. | MR 1196690 | Zbl 0779.58005

[3] Chang, S. Y. A. - Gursky, M. J. - Yang, P. C., The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. | MR 1261723

[4] Chang, S. Y. A. - Yang, P. C., Prescribing Gaussian curvature on 𝕊2, Acta Math., 159 (1987), 215-259. | MR 908146 | Zbl 0636.53053

[5] Chen, W. - Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. | MR 1121147 | Zbl 0768.35025

[6] Chen, W. - Li, C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. | MR 1129348

[7] Chen, C. C. - Lin, C. S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. | MR 2001443 | Zbl 1032.58010

[8] Clark, D. C., A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. | MR 296777 | Zbl 0228.58006

[9] De Marchis, F., Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. | MR 2475336 | Zbl 1165.35020

[10] De Marchis, F., Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. | MR 2671126 | Zbl 1211.58011

[11] Ding, W. - Jost, J. - Li, J. - Wang, G., Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. | MR 1712560 | Zbl 0937.35055

[12] Ding, W. - Jost, J. - Li, J. - Wang, G., The differential equation Δu=8π-8πheu on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. | MR 1491984 | Zbl 0955.58010

[13] Djadli, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. | MR 2409366 | Zbl 1151.53035

[14] Djadli, Z. - Malchiodi, A., Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. | MR 2456884 | Zbl 1186.53050

[15] Fournier, G. - Willem, M., Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. | MR 1019117 | Zbl 0683.70022

[16] Kiessling, M. K. H., Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. | MR 1797146

[17] Kazdan, J. L. - Warner, F. W., Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. | MR 343205 | Zbl 0273.53034

[18] Li, Y. Y. - Shafrir, I., Blow-up analysis for solutions of -Δu=Veu in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. | MR 1322618 | Zbl 0842.35011

[19] Li, Y. Y., Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. | MR 1673972 | Zbl 0928.35057

[20] Lin, C. S., Topological degree for mean field equations on S2, Duke Math. J., 104 (2000), 501-536. | MR 1781481 | Zbl 0964.35038

[21] Lucia, M., A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. | MR 2232208 | Zbl 1136.35368

[22] Lucia, M., A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. | MR 2363657 | Zbl 1135.58005

[23] Malchiodi, A., Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. | MR 2483132 | Zbl 1175.53052

[24] Nolasco, M. - Tarantello, G., On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. | MR 1664542 | Zbl 0980.46022

[25] Spanier, E. H., Algebraic topology, Springer-Verlag, New-York, 1966. | MR 210112

[26] Struwe, M. - Tarantello, G., On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. | MR 1619043 | Zbl 0912.58046

[27] Tarantello, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. | MR 1400816 | Zbl 0863.58081

[28] Yang, Y., Solitons in field theory and nonlinear analysis, Springer, 2001. | MR 1838682 | Zbl 0982.35003