Higher Secants of Spinor Varieties
Angelini, Elena
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 213-235 / Harvested from Biblioteca Digitale Italiana di Matematica

Let Sh be the even pure spinors variety of a complex vector space V of even dimension 2h endowed with a non degenerate quadratic form Q and let σk(Sh) be the k-secant variety of Sh. We decribe an algorithm which computes the complex dimension of σk(Sh). Then, by using an inductive argument, we get our main result: σk(Sh) has the expected dimension except when h{7,8}. Also we provide theoretical arguments which prove that S7 has a defective 3-secant variety and S8 has defective 3-secant and 4-secant varieties.

Publié le : 2011-06-01
@article{BUMI_2011_9_4_2_213_0,
     author = {Elena Angelini},
     title = {Higher Secants of Spinor Varieties},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {213-235},
     zbl = {1253.15032},
     mrnumber = {2840603},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_213_0}
}
Angelini, Elena. Higher Secants of Spinor Varieties. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 213-235. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_213_0/

[1] Abo, H. - Ottaviani, G. - Peterson, C., Non defectivity of Grassmannians of planes, arXiv:0901.2601v1 [math.AG], to appear on Journal of Algebraic Geometry. | MR 2846677 | Zbl 1242.14050

[2] Abo, H. - Ottaviani, G. - Peterson, C., Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 361, no. 2 (2009), 767-792. | MR 2452824 | Zbl 1170.14036

[3] Alexander, J. - Hirschowitz, A., Polinomial interpolation in several variables, Journal of Algebraic Geometry, 4, n. 2 (1995), 201-222. | MR 1311347 | Zbl 0829.14002

[4] Angelini, E., Varietà secanti alle varietà spinoriali, Laurea Thesis, Università di Firenze (2009).

[5] Boralevi, A. - Buczynski, J., Secants of Lagrangian Grassmannians, arXiv:1006.1925v1 [math.AG], to appear on Annali di Matematica. | MR 2861067 | Zbl 1250.14033

[6] Baur, K. - Draisma, J. - De Graaf, W., Secant dimensions of minimal orbits: computations and conjectures, Experimental Mathematics, 16, no. 2 (2007), 239-250. | MR 2339279 | Zbl 1162.14038

[7] Brambilla, M. C. - Ottaviani, G., On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra, 212 (2008), 1229-1251. | MR 2387598 | Zbl 1139.14007

[8] Chevalley, C., The algebraic theory of spinors, Columbia University Press, New York (1954). | MR 60497 | Zbl 0057.25901

[9] Chiantini, L. - Ciliberto, C., Weakly defective varieties , Trans. Amer. Math. Soc., 354, no 1 (2001), 151-178. | MR 1859030 | Zbl 1045.14022

[10] Catalisano, M. V. - Geramita, A. V. - Gimigliano, A., Secant varietes of 1××1 (n-times) are NOT Defective for n5′′, arXiv:0809.1701, to appear on Journal of Algebraic Geometry. | MR 2762993 | Zbl 1217.14039

[11] Kaji, H., Homogeneous projective varieties with degenerate secants, Trans. Amer. Math. Soc., 351, no 2 (1999), 533-545. | MR 1621761 | Zbl 0905.14031

[12] Grayson, D. R. - Stillman, M. E., Macaulay2, Software system available at http:// www.math.uiuc.edu/Macaulay2/.

[13] Landsberg, J. M., The geometry of Tensors with applications, Book in preparation (2009). | MR 2865915

[14] Landsberg, J. M. - Weyman, J., On secant varieties of Compact Hermitian Symmetric Spaces, J. Pure Appl. Algebra, 213 (2009), 2075-2086. | MR 2533306 | Zbl 1179.14035

[15] Manivel, L., On spinor varieties and their secants, SIGMA5 (2009) 078, special volume ``Elie Cartan and Differential Geometry''. | MR 2529169

[16] Zak, F. L., Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127. AMS, Providence, RI, 1993. | MR 1234494 | Zbl 0795.14018