Let be the even pure spinors variety of a complex vector space of even dimension endowed with a non degenerate quadratic form and let be the -secant variety of . We decribe an algorithm which computes the complex dimension of . Then, by using an inductive argument, we get our main result: has the expected dimension except when . Also we provide theoretical arguments which prove that has a defective 3-secant variety and has defective 3-secant and 4-secant varieties.
@article{BUMI_2011_9_4_2_213_0,
author = {Elena Angelini},
title = {Higher Secants of Spinor Varieties},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {4},
year = {2011},
pages = {213-235},
zbl = {1253.15032},
mrnumber = {2840603},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_213_0}
}
Angelini, Elena. Higher Secants of Spinor Varieties. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 213-235. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_213_0/
[1] - - , Non defectivity of Grassmannians of planes, arXiv:0901.2601v1 [math.AG], to appear on Journal of Algebraic Geometry. | MR 2846677 | Zbl 1242.14050
[2] - - , Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 361, no. 2 (2009), 767-792. | MR 2452824 | Zbl 1170.14036
[3] - , Polinomial interpolation in several variables, Journal of Algebraic Geometry, 4, n. 2 (1995), 201-222. | MR 1311347 | Zbl 0829.14002
[4] , Varietà secanti alle varietà spinoriali, Laurea Thesis, Università di Firenze (2009).
[5] - , Secants of Lagrangian Grassmannians, arXiv:1006.1925v1 [math.AG], to appear on Annali di Matematica. | MR 2861067 | Zbl 1250.14033
[6] - - , Secant dimensions of minimal orbits: computations and conjectures, Experimental Mathematics, 16, no. 2 (2007), 239-250. | MR 2339279 | Zbl 1162.14038
[7] - , On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra, 212 (2008), 1229-1251. | MR 2387598 | Zbl 1139.14007
[8] , The algebraic theory of spinors, Columbia University Press, New York (1954). | MR 60497 | Zbl 0057.25901
[9] - , Weakly defective varieties , Trans. Amer. Math. Soc., 354, no 1 (2001), 151-178. | MR 1859030 | Zbl 1045.14022
[10] - - , Secant varietes of (n-times) are NOT Defective for , arXiv:0809.1701, to appear on Journal of Algebraic Geometry. | MR 2762993 | Zbl 1217.14039
[11] , Homogeneous projective varieties with degenerate secants, Trans. Amer. Math. Soc., 351, no 2 (1999), 533-545. | MR 1621761 | Zbl 0905.14031
[12] - , Macaulay2, Software system available at http:// www.math.uiuc.edu/Macaulay2/.
[13] , The geometry of Tensors with applications, Book in preparation (2009). | MR 2865915
[14] - , On secant varieties of Compact Hermitian Symmetric Spaces, J. Pure Appl. Algebra, 213 (2009), 2075-2086. | MR 2533306 | Zbl 1179.14035
[15] , On spinor varieties and their secants, SIGMA5 (2009) 078, special volume ``Elie Cartan and Differential Geometry''. | MR 2529169
[16] , Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127. AMS, Providence, RI, 1993. | MR 1234494 | Zbl 0795.14018