Survey on Probabilistic Methods for the Study of Kac-like Equations
Bassetti, Federico ; Gabetta, Ester
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 187-212 / Harvested from Biblioteca Digitale Italiana di Matematica

This mainly explanatory paper shows how direct application of probabilistic methods, pertaining to central limit general theory, can enlighten us about the relaxation to equilibrium of the solutions of one-dimensional Boltzmann type equations. In particular, conditions under which the solutions of these equations converge to suitable scale mixture of stable distributions are reviewed. In addition, some recent results about the rate of convergence to steady states, with respect to various metrics, are summarized. Finally, by resorting to the above mentioned probabilistic methods, some new results related to a linear kinetic model are proven.

Publié le : 2011-06-01
@article{BUMI_2011_9_4_2_187_0,
     author = {Federico Bassetti and Ester Gabetta},
     title = {Survey on Probabilistic Methods for the Study of Kac-like Equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {187-212},
     zbl = {1229.60023},
     mrnumber = {2840602},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_2_187_0}
}
Bassetti, Federico; Gabetta, Ester. Survey on Probabilistic Methods for the Study of Kac-like Equations. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 187-212. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_2_187_0/

[1] Alsmeyer, G. - Iksanov, A. - Rösler, U., On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666-682. | MR 2530108 | Zbl 1173.60309

[2] Ambrosio, L. - Gigli, N. - Savaré, G. , Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser Verlag (2008). | MR 2401600

[3] Baldassarri, A. - Puglisi, A. - Marini Bettolo Marconi, U., Kinetics models of inelastic gases. Math. Models Methods Appl. Sci., 12 (2002), 965-983. | MR 1918169 | Zbl 1174.82326

[4] Bassetti, F. - Ladelli, L. - Matthes, D., Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields (2010) (Published on line). | MR 2800905 | Zbl 1225.82055

[5] Bassetti, F. - Ladelli, L. - Regazzini, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys., 133 (2008), 683-710 | MR 2456941 | Zbl 1161.82337

[6] Bassetti, F. - Gabetta, E. - Regazzini, E., On the depth of the trees in the McKean representation of Wilds sums. Transport Theory Statist. Phys., 36 (2007), 421-438. | MR 2357202 | Zbl 1183.82053

[7] Bassetti, F. - Toscani, G., Explicit equilibria in a kinetic model of gambling. Phys. Rev. E, 81 (2010), 66-115. | MR 2736281

[8] Ben-Avraham, D. - Ben-Naim, E. - Lindenberg, K. - Rosas, A., Self-similarity in random collision processes. Phys. Rev. E, 68 (2003).

[9] Bobylev, A. V., The theory of the spatially Uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Review C, 7 (1988), 112-229. | MR 1128328

[10] Bobylev, A. V. - Carrillo, J. A. - Gamba, I. M., On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys., 98 (2000), 743-773. | MR 1749231 | Zbl 1056.76071

[11] Bobylev, A. V. - Cercignani, C. - Gamba, I. M., On the self-similar asymptotics for generalized nonlinear kinetic maxwell models. Comm. Math. Phys., 291 (2009), 599-644. | MR 2534787 | Zbl 1192.35126

[12] Bobylev, A. V. - Cercignani, C., Exact eternal solutions of the Boltzmann equation. J. Stat. Phys., 106 (2002), 1019-1038. | MR 1889600 | Zbl 1001.82090

[13] Bobylev, A. V. - Cercignani, C., Self similar solutions of the Boltzmann equation and their applications. J. Stat. Phys., 106 (2002), 1039-1071. | MR 1889601 | Zbl 1001.82091

[14] Breiman, L., Probability. Corrected reprint of the 1968 original. Classics in Applied Mathematics, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). | MR 1163370

[15] Carlen, E. A. - Carvalho, M. C. - Gabetta, E., Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53 (2000), 370-397. | MR 1725612 | Zbl 1028.82017

[16] Carlen, E. A. - Carvalho, M. C. - Gabetta, E., On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. An., 220 (2005), 362-387. | MR 2119283 | Zbl 1108.82036

[17] Carlen, E. A. - Gabetta, E. - Toscani, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys., 199 (1999), 521-546. | MR 1669689 | Zbl 0927.76088

[18] Carlen, E. A. - Gabetta, E. - Regazzini, E., On the rate of explosion for infinite energy solutions of the spatially homogeneous Boltzmann equation. J. Stat. Phys., 129 (2007), 699-723. | MR 2360229 | Zbl 1131.82023

[19] Carlen, E. A. - Gabetta, E. - Regazzini, E., Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Probab., 45 (2008), 95-106. | MR 2409313 | Zbl 1142.60013

[20] Carlen, E. A. - Lu, X., Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys., 112 (2003), 59-134. | MR 1991033 | Zbl 1079.82012

[21] Cercignani, C., Theory and application of the Boltzmann equation. Elsevier, New York (1975). | MR 406273 | Zbl 0403.76065

[22] Cercignani, C., The Boltzmann equation and its applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York (1988). | MR 1313028 | Zbl 0646.76001

[23] Cercignani, C., Mathematical methods in kinetic theory. Second edition. Plenum Press, New York (1990). | MR 1069558 | Zbl 0726.76083

[24] Cercignani, C., Shear flow of a granular material. J. Statist. Phys., 102 (2001), 1407-1415. | MR 1830452 | Zbl 0990.82023

[25] Cercignani, C. - Illner, R. - Pulvirenti, M., The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York (1994). | MR 1307620 | Zbl 0813.76001

[26] C. Cercignani - E. Gabetta Eds., Transport phenomena and kinetic theory. Applications to Gases, Semiconductors, Photons, and Biological Systems. Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, MA (2007). | MR 2334302

[27] Cramér, H., On the approximation to a stable probability distribution. In Studies in Mathematical Analysis and Related Topics. Stanford Univ. Press. (1962), 70-76. | MR 146874

[28] Cramér, H., On asymptotic expansions for sums of independent random variables with a limiting stable distribution. Sankhya Ser. A, 25 (1963), 13-24. Addendum, ibid. 216. | MR 174079

[29] Dolera, E. - Gabetta, E. - Regazzini, E., Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. Ann. Appl. Probab., 19 (2009), 186-209. | MR 2498676 | Zbl 1163.60007

[30] Dolera, E. - Regazzini, E., The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation. Ann. Appl. Probab., 20 (2010), 430-461. | MR 2650038 | Zbl 1195.60033

[31] Drmota, M., Random trees. An interplay between combinatorics and probability. SpringerWienNew York, Vienna (2009). | MR 2484382 | Zbl 1170.05022

[32] Durrett, R. - Liggett, T. M., Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete, 64 (1983), 275-301. | MR 716487 | Zbl 0506.60097

[33] Fortini, S. - Ladelli, L. - Regazzini, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. | MR 1445757 | Zbl 0881.60019

[34] Gabetta, E., Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases. In Transport phenomena and kinetic theory (2007), 19-37, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, MA. | MR 2334304 | Zbl 1121.82034

[35] Gabetta, E. - Regazzini, E., Some new results for McKean's graphs with applications to Kac's equation. J. Stat. Phys., 125 (2006), 947-974. | MR 2283786 | Zbl 1107.82046

[36] Gabetta, E. - Regazzini, E., Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2008), 2320-2336. | MR 2474538 | Zbl 1161.82018

[37] Gabetta, E. - Regazzini, E., Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics. Probab Theory Related Fields, 146 (2010), 451-480. | MR 2574735 | Zbl 1181.60030

[38] Gnedenko, B. V. - Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA (1954). | MR 62975 | Zbl 0056.36001

[39] Goldie, C. M. - Gruèbel, R., Perpetuities with thin tails. Adv. in Appl. Probab., 28 (1996), 463-480. | MR 1387886 | Zbl 0862.60046

[40] Goldie, C. M. - Maller, R. A., Stability of perpetuities. Ann. Probab., 28 (2000), 1195-1218. | MR 1797309 | Zbl 1023.60037

[41] Fischer, H., History of the Central Limit Theorem. Springer (2010).

[42] Hall, P., Two-sided bounds on the rate of convergence to a stable law. Z. Wahrsch. Verw. Gebiete, 57 (1981), 349-364. | MR 629531 | Zbl 0451.60026

[43] Ibragimov, I. A. - Linnik, Y. V., Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). | MR 322926 | Zbl 0219.60027

[44] Kac, M., Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1954-1955), 171-197. University of California Press, Berkeley and Los Angeles (1956). | MR 84985

[45] Mckean Jr, H. P.., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. | MR 214112 | Zbl 1302.60049

[46] Mckean Jr, H. P.., An exponential formula for solving Boltmann's equation for a Maxwellian gas. J. Combinatorial Theory, 2 (1967), 358-382. | MR 224348 | Zbl 0152.46501

[47] Liu, Q., Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. in Appl. Probab., 30 (1998), 85-112. | MR 1618888 | Zbl 0909.60075

[48] Liu, Q., On generalized multiplicative cascades. Stochastic Process. Appl., 86 (2000), 263-286. | MR 1741808 | Zbl 1028.60087

[49] Matthes, D. - Toscani, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. | MR 2379241 | Zbl 1138.91020

[50] Matthes, D. - Toscani, G., Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity, 23 (2010), 2081-2100 | MR 2672637 | Zbl 1203.82073

[51] Petrov, V. V., Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995). | MR 1353441 | Zbl 0826.60001

[52] Pulvirenti, A. - Toscani, G., Asymptotic properties of the inelastic Kac model. J. Statist. Phys., 114 (2004), 1453-1480. | MR 2039485 | Zbl 1072.82030

[53] Regazzini, E., Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View. Bollettino UMI, 2 (2009), 175-198. | MR 2493650 | Zbl 1177.82093

[54] Rachev, S. T., Probability metrics and the stability of stochastic models. Wiley, New York (1991). | MR 1105086 | Zbl 0744.60004

[55] Sznitman, A. S., Èquations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete, 66 (1986), 559-592. | MR 753814

[56] Tanaka, H., An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrsch. Verw. Gebiete, 27 (1973), 47-52. | MR 362442 | Zbl 0302.60005

[57] Tanaka, H., Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete, 46 (1978), 67-105. | MR 512334 | Zbl 0389.60079

[58] Toscani, G., Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters, 88 (2009), 10007.

[59] Vervaat, W., On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab., 11 (1979), 750-783. | MR 544194 | Zbl 0417.60073

[60] Villani, C., Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). | MR 1964483 | Zbl 1106.90001

[61] Villani, C., Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin (2009). | MR 2459454 | Zbl 1156.53003

[62] Wild, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. | MR 42999 | Zbl 0043.43703