In this article we provide a complete and self-contained treatment of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules.
@article{BUMI_2011_9_4_1_47_0, author = {Emanuele Dolera}, title = {On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {47-68}, zbl = {1251.82045}, mrnumber = {2797465}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_1_47_0} }
Dolera, Emanuele. On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 47-68. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_1_47_0/
[1] The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Mathematical Physics Reviews, 7 (1988), 111-233. | MR 1128328 | Zbl 0850.76619
,[2] Fast and slow convergence to equilibrium for Maxwellian molecules via Wild Sums. J. Stat. Phys., 112 (2003), 59-134. | MR 1991033 | Zbl 1079.82012
- ,[3] | MR 255199 | Zbl 0191.25103
, Mathematical Methods in Kinetic Theory. Plenum Press, New York (1969).[4] | MR 1313028 | Zbl 0646.76001
, The Boltzmann Equation and its Applications. Springer-Verlag, New York (1988).[5] -Stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. Meccanica, 23 (1988), 15-18. | MR 980181 | Zbl 0667.76119
- - ,[6] | MR 1148892 | Zbl 0063.00782
- , The Mathematical Theory of Nonuniform Gases. 1st ed. Cambridge University Press, Cambridge (1939).[7]
- - - , Higher trascendental functions. McGraw Hill, New York (1953).[8] Asymptotic theory of the Boltzmann equation, II. Rarefied Gas Dynamics, 3rd Symposium (1962), 26-59. | MR 156656
,[9] Begründung der kinetischen Gastheorie. Math. Ann., 72 (1912), 562-577. | MR 1511713
,[10] Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys., 261 (2006), 629-672. | MR 2197542 | Zbl 1113.82062
,[11] Quantitative linearized study of the Boltzmann collision operator and applications. Commun. Math. Sci., 5, suppl. 1 (2007), 73-86. | MR 2301289 | Zbl 1219.76045
,[12] | MR 1162979
- - , Integrals and Series. Vol. 4: Laplace Transforms. Gordon and Breach Science Publishers, Amsterdam (1998).[13] IX (1959). Interscience Publishers, New York. Reprinted by Dover Publications (1991). | MR 103368
, Orthogonal Functions. Pure and Applied Mathematics. Vol.[14] | MR 554086
- , Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas. Academic Press, New York (1980).[15] I (2002), 71-305. ( and eds.). North-Holland, Amsterdam. | MR 1942465 | Zbl 1170.82369
, A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, Vol.[16]
- , On the propagation of sound in monoatomic gases. Univ. of Michigan Press. Ann Arbor, Michigan. Reprinted in 1970 in Studies in Statistical Mechanics. Vol. V (1952). Edited by - , North-Holland.[17] | MR 10746
, A Treatise on the Thery of Bessel Functions. 2nd ed. Cambridge University Press, London (1944).