On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules
Dolera, Emanuele
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 47-68 / Harvested from Biblioteca Digitale Italiana di Matematica

In this article we provide a complete and self-contained treatment of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules.

Publié le : 2011-02-01
@article{BUMI_2011_9_4_1_47_0,
     author = {Emanuele Dolera},
     title = {On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {47-68},
     zbl = {1251.82045},
     mrnumber = {2797465},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_1_47_0}
}
Dolera, Emanuele. On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 47-68. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_1_47_0/

[1] Bobylev, A. V., The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Mathematical Physics Reviews, 7 (1988), 111-233. | MR 1128328 | Zbl 0850.76619

[2] Carlen, E. A. - Lu, X., Fast and slow convergence to equilibrium for Maxwellian molecules via Wild Sums. J. Stat. Phys., 112 (2003), 59-134. | MR 1991033 | Zbl 1079.82012

[3] Cercignani, C., Mathematical Methods in Kinetic Theory. Plenum Press, New York (1969). | MR 255199 | Zbl 0191.25103

[4] Cercignani, C., The Boltzmann Equation and its Applications. Springer-Verlag, New York (1988). | MR 1313028 | Zbl 0646.76001

[5] Cercignani, C. - Lampis, M. - Sgarra, C., L2-Stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. Meccanica, 23 (1988), 15-18. | MR 980181 | Zbl 0667.76119

[6] Chapman, S. - Cowling, T. G., The Mathematical Theory of Nonuniform Gases. 1st ed. Cambridge University Press, Cambridge (1939). | MR 1148892 | Zbl 0063.00782

[7] Erdélyi, A. - Magnus, W. - Oberhettinger, F. - Tricomi, F. G., Higher trascendental functions. McGraw Hill, New York (1953).

[8] Grad, H., Asymptotic theory of the Boltzmann equation, II. Rarefied Gas Dynamics, 3rd Symposium (1962), 26-59. | MR 156656

[9] Hilbert, D., Begründung der kinetischen Gastheorie. Math. Ann., 72 (1912), 562-577. | MR 1511713

[10] Mouhot, C., Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys., 261 (2006), 629-672. | MR 2197542 | Zbl 1113.82062

[11] Mouhot, C., Quantitative linearized study of the Boltzmann collision operator and applications. Commun. Math. Sci., 5, suppl. 1 (2007), 73-86. | MR 2301289 | Zbl 1219.76045

[12] Prudnikov, A. P. - Brychkov, Yu. A. - Marichev, O. I., Integrals and Series. Vol. 4: Laplace Transforms. Gordon and Breach Science Publishers, Amsterdam (1998). | MR 1162979

[13] Sansone, G., Orthogonal Functions. Pure and Applied Mathematics. Vol. IX (1959). Interscience Publishers, New York. Reprinted by Dover Publications (1991). | MR 103368

[14] Truesdell, C. - Muncaster, R., Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas. Academic Press, New York (1980). | MR 554086

[15] Villani, C., A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, Vol. I (2002), 71-305. (S. Friedlander and D. Serre eds.). North-Holland, Amsterdam. | MR 1942465 | Zbl 1170.82369

[16] Wang Chang, C. S. - Uhlenbeck, G. E., On the propagation of sound in monoatomic gases. Univ. of Michigan Press. Ann Arbor, Michigan. Reprinted in 1970 in Studies in Statistical Mechanics. Vol. V (1952). Edited by J. L. Lebowitz - E. Montroll, North-Holland.

[17] Watson, G. N., A Treatise on the Thery of Bessel Functions. 2nd ed. Cambridge University Press, London (1944). | MR 10746