Perturbation Theory in Terms of a Generalized Phase-Space Quantization Procedure
Morandi, Omar ; Barletti, Luigi ; Frosali, Giovanni
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 1-18 / Harvested from Biblioteca Digitale Italiana di Matematica

A new approach to perturbation theory in the quantum phase-space formalism is proposed, in order to devise some approximated description of the quantum phase-space dynamics, which is not directly related to the usual semi-classical approximation. A general class of equivalent quasi-distribution functions based on the Wigner-Moyal formalism is considered and a first-order invariant formulation of the dynamics is obtained. The relationship between the various phase-space representations is expressed in term of a pseudo-differential operator defined by the Moyal product. In particular, our theory is applied to the sub-class of representations obtained by a first order perturbation of the Wigner representation. Finally the connection of our approach with some well established gauge-invariant formulations of the Wigner dynamics in the presence of an external magnetic field is investigated.

Publié le : 2011-02-01
@article{BUMI_2011_9_4_1_1_0,
     author = {Omar Morandi and Luigi Barletti and Giovanni Frosali},
     title = {Perturbation Theory in Terms of a Generalized Phase-Space Quantization Procedure},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {1-18},
     zbl = {1234.81078},
     mrnumber = {2797463},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_1_1_0}
}
Morandi, Omar; Barletti, Luigi; Frosali, Giovanni. Perturbation Theory in Terms of a Generalized Phase-Space Quantization Procedure. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 1-18. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_1_1_0/

[1] Sakurai, J. J., Advanced Quantum Mechanics, Addison-Wesley, Reading, Mass. (1967).

[2] C. K. Zachos - D. B. Fairlie - T. L. Curtright (Eds.), Quantum mechanics in phase-space: an overview with selected papers, World Scientific Series in 20th Century Physics, vol. 34, World Scientific Publishing, Hackensack, NJ (2005). | MR 2766463 | Zbl 1098.81008

[3] Lee, H.-W., Theory and application of the quantum phase-space distribution functions, Physics Reports, 259 (1995), 147. | MR 1346085

[4] Glauber, R. J., The Quantum Theory of Optical Coherence, Phys. Rev., 130 (1963), 2529. | MR 156576

[5] Frensley, W. R., Boundary conditions for open quantum systems driven far from equilibrium, Rev. Mod. Phys., 62 (3) (1990), 745.

[6] Jacoboni, C. - Bordone, P., The Wigner-function approach to non-equilibrium electron transport, Rev. Prog. Phys., 67 (2004), 1033-1071.

[7] Kosik, R. - Nedjalkov, M. - Kosina, H. - Selberherr, S., A space dependent Wigner equation including phonon interaction, J. Comput. Electr., 1 (2002), 27.

[8] Morandi, O., Effective classical Liouville-like evolution equation for the quantum phase space dynamics, J. Phys. A: Math. Theor., 43 (2010), 365302. | MR 2671720 | Zbl 1196.81154

[9] Morandi, O., Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor, Phys. Rev. B, 80 (2009), 024301.

[10] Barletti, L. - Demeio, L. - Frosali, G., Multiband quantum transport models for semiconductor devices. In: C. Cercignani, E. Gabetta (Eds.) Transport Phenomena and Kinetic Theory, Birkhauser, Basel (2007), 55-89. | MR 2334306 | Zbl 1121.82036

[11] Von Neumann, J., Mathematische Grundlagen der Quantomechanik, Springer Verlag, Berlin (1932).

[12] Cohen, L., Generalized phase-space distribution functions, J. Math. Phys., 7 (1966), 781. | MR 194105

[13] Folland, G. B., Harmonic Analysis in Phase Space, Princeton University Press, Princeton (1989). | MR 983366 | Zbl 0682.43001

[14] Haug, H. - Jauho, A.-P., Quantum Kinetics in Transport and Optic of Semiconductor, Springer Series in Solid-State, Berlin (1996).

[15] Varro, S. - Javanainen, J., Gauge-invariant relativistic Wigner functions, J. Opt. B: Quantum Semiclass. Opt., 5 (2003), 402. | MR 1992721 | Zbl 1016.81038