In this paper we prove that a solvable, finitely generated group G of finite torsion-free rank admitting a quasi regular automorphism of prime order is virtually nilpotent. We also prove that the hypothesis that G is finitely generated can be omitted if G is a minimax group.
@article{BUMI_2011_9_4_1_123_0, author = {Egle Bettio and Enrico Jabara}, title = {Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4}, year = {2011}, pages = {123-136}, zbl = {1247.20043}, mrnumber = {2797469}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_1_123_0} }
Bettio, Egle; Jabara, Enrico. Gruppi risolubili dotati di un automorfismo di ordine primo a centralizzante finito. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 123-136. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_1_123_0/
[1] On almost regular automorphisms. Arch. Math. (Basel) 94 (2010), 19-27. | MR 2581329 | Zbl 1205.20041
,[2] Polycyclic group admitting an almost regular automorphism of prime order. J. Algebra, 323 (2010), 3142-3146. | MR 2629705 | Zbl 1202.20037
,[3] Finite soluble groups containing an element of prime order whose centralizer is small. Arch. Math. (Basel) 36 (1981), 211-213. | MR 620509 | Zbl 0447.20014
- ,[4] Una nota sui gruppi dotati di un automorfismo uniforme di ordine potenza di un primo. Rend. Sem. Mat. Univ. Padova, 84 (1990), 217-221.
,[5] Automorphisms with finite Reidemeister number in residually finite groups. J. Algebra, 320 (2008), 3671-3679. | MR 2457715 | Zbl 1161.20026
,[6] 8. Walter de Gruyter Co., Berlin (1993). | MR 1224233 | Zbl 0795.20018
, Nilpotent groups and their automorphisms. de Gruyter Expositions in Mathematics,[7] | MR 2093872
- , The theory of infinite soluble groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2004).[8] 80. Springer-Verlag, New York (1996). | MR 1357169
, A course in the theory of groups. Second edition. GTM,[9] Sugli automorfismi uniformi nei gruppi di Hirsch. Ricerche Mat., 7 (1958), 3-13. | MR 100632
,