Groups with Normality Conditions for Non-Periodic Subgroups
De Falco, Maria ; de Giovanni, Francesco ; Musella, Carmela
Bollettino dell'Unione Matematica Italiana, Tome 4 (2011), p. 109-121 / Harvested from Biblioteca Digitale Italiana di Matematica

The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.

Publié le : 2011-02-01
@article{BUMI_2011_9_4_1_109_0,
     author = {Maria De Falco and Francesco de Giovanni and Carmela Musella},
     title = {Groups with Normality Conditions for Non-Periodic Subgroups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4},
     year = {2011},
     pages = {109-121},
     zbl = {1238.20043},
     mrnumber = {2797468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2011_9_4_1_109_0}
}
De Falco, Maria; de Giovanni, Francesco; Musella, Carmela. Groups with Normality Conditions for Non-Periodic Subgroups. Bollettino dell'Unione Matematica Italiana, Tome 4 (2011) pp. 109-121. http://gdmltest.u-ga.fr/item/BUMI_2011_9_4_1_109_0/

[1] Baer, R., Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23 (1957), 11-28. | MR 103925

[2] De Falco, M., Groups with many nearly normal subgroups, Boll. Un. Mat. Ital., 4B (2001), 531-540. | MR 1832003 | Zbl 1147.20302

[3] De Falco, M. - De Giovanni, F. - Musella, C., Groups whose finite homomorphic images are metahamiltonian, Comm. Algebra, 37 (2009), 2468-2476. | MR 2536934 | Zbl 1178.20033

[4] De Falco, M. - Musella, C., Groups with many subgroups having modular subgroup lattice, Ricerche Mat., 51 (2002), 241-247. | MR 2030541 | Zbl 1144.20306

[5] Doerk, K., Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966), 198-205. | MR 191962

[6] De Giovanni, F. - Vincenzi, G., Some topics in the theory of pronormal subgroups of groups, Quaderni Mat., 8 (2001), 175-202. | MR 1949564 | Zbl 1021.20019

[7] Heineken, H. - Mohamed, I. J., A group with trivial centre satisfying the normalizer condition, J. Algebra, 10 (1968), 368-376. | MR 235035 | Zbl 0167.29001

[8] Kurdachenko, L. A. - Levishchenko, S. S. - Semko, N. N., Groups with almost normal infinite subgroups, Soviet Math. (izv. VUZ), 27 (1983), 73-81. | MR 729965 | Zbl 0572.20024

[9] Kuzennyi, N. F. - Semko, N. N., Structure of solvable nonnilpotent metahamiltonian groups, Math. Notes, 34 (1983), 572-577. | MR 719472 | Zbl 0545.20027

[10] Kuzennyi, N. F. - Subbotin, I. Y., Groups in which all subgroups are pronormal, Ukrain. Math. J., 39 (1987), 251-254. | MR 899498 | Zbl 0642.20028

[11] Moèhres, W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 54 (1990), 232-235. | MR 1037610

[12] Musella, C., Polycyclic groups with modular finite homomorphic images, Arch. Math. (Basel), 76 (2001), 161-165. | MR 1816986 | Zbl 0988.20017

[13] Neumann, B. H., Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | MR 72137 | Zbl 0064.25201

[14] Otal, J. - Peña, J. M., Minimal non-CC-groups, Comm. Algebra, 16 (1988), 1231- 1242. | MR 939041 | Zbl 0644.20025

[15] Robinson, D. J. S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964), 21-38. | MR 159885 | Zbl 0123.24901

[16] Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). | MR 332989 | Zbl 0243.20032

[17] Robinson, D. J. S., Groups whose homomorphic images have a transitive normality relation, Trans. Amer. Math. Soc., 176 (1973), 181-213. | MR 323907 | Zbl 0272.20020

[18] Romalis, G. M. - Sesekin, N. F., Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR 202837

[19] Romalis, G. M. - Sesekin, N. F., Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR 269733 | Zbl 0351.20021

[20] Romalis, G. M. - Sesekin, N. F., Metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR 285610 | Zbl 0324.20036

[21] Schmidt, R., Subgroup Lattices of Groups, de Gruyter, Berlin (1994). | MR 1292462

[22] Smith, H., Groups with few non-nilpotent subgroups, Glasgow Math. J., 39 (1997), 141-151. | MR 1460630 | Zbl 0883.20018

[23] Smith, H. - Wiegold, J., Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 60 (1996), 222-227. | MR 1375587 | Zbl 0855.20028

[24] Tomkinson, M. J., FC-groups, Pitman, Boston (1984). | MR 742777