On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.
@article{BUMI_2010_9_3_3_591_0, author = {Augusto Visintin}, title = {Scale-Transformations of Maximal Monotone Relations in View of Homogenization}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {591-601}, mrnumber = {2742783}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_591_0} }
Visintin, Augusto. Scale-Transformations of Maximal Monotone Relations in View of Homogenization. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 591-601. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_591_0/
[1] Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23 (1992), 1482-1518. | MR 1185639 | Zbl 0770.35005
,[2] | MR 2582280 | Zbl 1197.35002
, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010.[3] | MR 348562 | Zbl 0252.47055
, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973.[4] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974. | MR 637214 | Zbl 0332.49032
- ,[5] | MR 1201152 | Zbl 0816.49001
, An Introduction to -Convergence. Birkhäuser, Boston1993.[6] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) (1975), 842-850. | MR 448194
- ,[7] | MR 463993
- , Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974.[8] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65; Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR 1009594 | Zbl 0669.47029
,[9] Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. | MR 515958 | Zbl 0395.49007
,[10] Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | MR 2128696 | Zbl 1083.47036
- ,[11] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR 418609 | Zbl 0345.73037
,[12] A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20 (1989), 608-623. | MR 990867 | Zbl 0688.35007
,[13] | MR 274683
, Convex Analysis. Princeton University Press, Princeton1969.[14] Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18 (2006), 223-252. | MR 2245987 | Zbl 1160.74331
,[15] Homogenization of the nonlinear Maxwell model of visco-elasticity and of the Prandtl-Reuss model of elasto-plasticity. Royal Soc. Edinburgh Proc. A, 138 (2008), 1-39. | MR 2488064
,[16] Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl., 89 (2008), 477-504. | MR 2416672 | Zbl 1166.35004
,[17] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR 2489147 | Zbl 1191.47067
,[18] Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations, 36 (2009), 565-590. | MR 2558331 | Zbl 1184.35041
,[19] Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. (in press). | MR 2721590 | Zbl 1233.78043
,[20] Homogenization of processes in nonlinear visco-elastic composites. Ann. Scuola Norm. Sup. Pisa (in press). | MR 2905380 | Zbl 1242.35033
,[21] A minimization principle for monotone equations. (submitted).
,[22] Scale-transformations and homogenization of maximal monotone relations, with applications. (forthcoming). | MR 3086566 | Zbl 1302.35042
,[23] Homogenization of a parabolic model of ferromagnetism. (forthcoming). | MR 2737216 | Zbl 1213.35066
, , Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators. Springer, New York1990.