The aim of this short note is to prove the equivalence of certain definitions of solutions to an evolution variational inequality in metric spaces, introduced by Ambrosio, Gigli, Savaré, and Daneri, Savaré.
@article{BUMI_2010_9_3_3_583_0, author = {P. Cl\'ement and W. Desch}, title = {Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {583-588}, zbl = {1217.49009}, mrnumber = {2742782}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_583_0} }
Clément, P.; Desch, W. Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 583-588. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_583_0/
[1] | MR 2129498
- - , Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel 2005.[2] Solutions intégrales d'équations d'évolution dans un espace de Banach, C. R. Acad. Sci. Paris Sér., A-B 274 (1972), A47-A50. | MR 300164 | Zbl 0246.47068
,[3] Introduction to Gradient Flows in Metric Spaces (II), https://igk.math.uni-bielefeld.de/study-materials/notes-clement-part2.pdf.
,[4] Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122. | MR 2452882 | Zbl 1166.58011
- ,