We provide a survey on the mountain pass theory, viewed as a central tool in the modern nonlinear analysis. The abstract results are illustrated with relevant applications to nonlinear partial differential equations.
@article{BUMI_2010_9_3_3_543_0, author = {Patrizia Pucci and Vicentiu Radulescu}, title = {The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {543-582}, zbl = {1225.49004}, mrnumber = {2742781}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_543_0} }
Pucci, Patrizia; Rădulescu, Vicenṭiu. The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 543-582. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_543_0/
[1] 104, Cambridge University Press, Cambridge, 2007. | MR 2292344 | Zbl 1125.47052
- , Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol.[2] Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. | MR 370183 | Zbl 0273.49063
- ,[3] Partial differential equations in the 20th century, Adv. Math., 135 (1998), 76-144. | MR 1617413 | Zbl 0915.01011
- ,[4] Free vibrations for a nonlinear wave equation and a theorem of Rabinowitz, Comm. Pure Appl. Math., 33 (1980), 667-689. | MR 586417 | Zbl 0484.35057
- - ,[5] Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-964. | MR 1127041 | Zbl 0751.58006
- ,[6] Un criterio di esistenza per i punti critici su varietà illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336. | MR 581298
,[7] Variational methods for non-differentiable functionals and applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. | MR 614246 | Zbl 0487.49027
,[8] Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247-262. | MR 367131 | Zbl 0307.26012
,[9] Solution périodique des équations hamiltoniennes, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A951-A952. | MR 520777 | Zbl 0422.35005
,[10] Generalized gradients of Lipschitz functionals, Adv. in Math., 40 (1981), 52-67. | MR 616160 | Zbl 0463.49017
,[11] | MR 193606
, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1966.[12] On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. | MR 346619 | Zbl 0286.49015
,[13] Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. | MR 526967 | Zbl 0441.49011
,[14]
, Die GaskuÈgeln, Teubner, Leipzig, 1907.[15] Further studies of Emden and similar differential equations, Quart. J. Math., 2 (1931), 259-288. | Zbl 57.0523.02
,[16] 37, Oxford University Press, 2008. | MR 2488149
- , Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol.[17] A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989), 321-330. | MR 1030853 | Zbl 0711.58008
- ,[18] The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Encyclopedia of Mathematics and its Applications, vol. 95, Cambridge University Press, Cambridge, 2003. | MR 2012778 | Zbl 1036.49001
,[19] Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom., 10 (1975), 113-134. | MR 365409 | Zbl 0296.53037
- ,[20] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. | MR 477445 | Zbl 0325.35038
- ,[21] Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010. | MR 2683404
- - ,[22] Valeur moyenne pour gradient generalisé, C. R. Acad. Sci. Paris, 281 (1975), 795-797. | MR 388097 | Zbl 0317.46034
,[23] Some aspects of nonlinear operators and critical point theory, Functional analysis in China ( , , Eds.), Kluwer Academic Publishers, Dordrecht, 1996, 132-144. | MR 1379601 | Zbl 0847.58013
,[24] 74, Springer, New York, 1989. | MR 982267 | Zbl 0676.58017
- , Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol.[25] Ljusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. | MR 259955 | Zbl 0143.35203
,[26] A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. | MR 158411
- ,[27] On the eigenfunctions of the equation , Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. | MR 192184
,[28] Extensions of the mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. | MR 766489 | Zbl 0564.58012
- ,[29] A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. | MR 808262 | Zbl 0585.58006
- ,[30] A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703. | MR 855181 | Zbl 0625.35027
- ,[31] The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc., 299 (1987), 115-132. | MR 869402 | Zbl 0611.58019
- ,[32] A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl., 79 (2000), 57-71. | MR 1742565 | Zbl 0952.35163
- ,[33] The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66; Erratum, J. Differential Equations, 207 (2004), 226-227. | MR 2100819 | Zbl 1109.35022
- ,[34] On the strong maximum and compact support principles and some applications, in Handbook of Differential Equations - Stationary Partial Differential Equations ( , Ed.), Elsevier, Amsterdam, Vol. 4 (2007), 355-483. | MR 2569337 | Zbl 1193.35024
- ,[35] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conference Series in Mathematics, 65, 1986American Mathematical Society, Providence, RI. | MR 845785
,[36] Mountain pass theorems for non-differentiable functions and applications, Proc. Japan Acad., 69A (1993), 193-198. | MR 1232824
,[37] Darstellung der Eigenwerte von durch ein Randintegral, Math. Z., 46 (1940), 635-636. | MR 2456
,[38] | MR 365062
, Functional Analysis, Mc Graw-Hill, 1973.[39] | MR 2512303 | Zbl 1186.35043
, Minimax Systems and Critical Point Theory, Birkhäuser, Boston, 2009.[40] Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302. | MR 170096 | Zbl 0128.09101
,[41] | MR 1078018
, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990.[42] 24, Birkhäuser, Boston, 1996. | MR 1400007
, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. , Sign-changing Critical Point Theory, Springer, New York, 2008.