For ; , and we consider vector valued minimizers of a uniformly convex integral functional of the type where is a Carathéorody function satisfying growth conditions with respect to the second variable. We show that if the dimension is small enough, dependent on the structure conditions of the functional, there holds for some , also depending on the structural data, provided that the nonlinearity exponent is uniformly continuous with modulus of continuity satisfying
@article{BUMI_2010_9_3_3_521_0, author = {Jens Habermann}, title = {Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {521-541}, zbl = {1217.49029}, mrnumber = {2742780}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_521_0} }
Habermann, Jens. Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 521-541. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_521_0/
[1] Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. | MR 1814973 | Zbl 0984.49020
- ,[2] Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. | MR 1895714 | Zbl 1027.49031
- ,[3] Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. | MR 1930392 | Zbl 1038.76058
- ,[4] Gradient estimates for the -laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. | MR 2155087 | Zbl 1093.76003
- ,[5] Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. | MR 697613
,[6] Functionals with -growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. | MR 2246061 | Zbl 1102.49010
- - ,[7] Hölder continuity of the gradient of harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. | MR 1675954 | Zbl 0920.49020
- ,[8] Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | MR 1703712 | Zbl 0949.49022
- - ,[9] Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces and , Math. Nachr., 268 (2004), 31-43. | MR 2054530 | Zbl 1065.46024
,[10] Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. | MR 1855456 | Zbl 0995.35017
- - ,[11] Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. | MR 1815935 | Zbl 0974.46040
- ,[12] Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. | MR 1944549
- ,[13] Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. | MR 2044264 | Zbl 1178.49045
,[14] Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. | MR 2426338 | Zbl 1147.49028
- ,[15] Sharp regularity for functionals with growth, J. Differential Equations 204, no. 1 (2004), 5-55. | MR 2076158 | Zbl 1072.49024
- - ,[16] A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. | MR 1688232
- ,[17] | MR 1962933 | Zbl 1028.49001
, Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003).[18] Partial regularity for minima of higher order functionals with growth, Manuscripta Math., 126 (1) (2007), 1-40. | MR 2395246 | Zbl 1142.49017
,[19] Calderón-Zygmund estimates for higher order systems with growth, Math. Z., 258 (2) (2008), 427-462. | MR 2357646 | Zbl 1147.42004
,[20] On spaces and , Czechoslovak Math. J., 41, no. 116 (1991).
- ,[21] Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differ. Equations, 90 (1991), 1-30. | MR 1094446 | Zbl 0724.35043
,[22] | MR 724434 | Zbl 0557.46020
, Orlicz spaces and modular spaces, Springer, Berlin, 1983.[23] Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78.
- ,[24] On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. | MR 1486765 | Zbl 0917.49006
,