Remarks About Morphisms on an Algebraic Curve
Guerra, Lucio
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 505-519 / Harvested from Biblioteca Digitale Italiana di Matematica

In a previous paper we described the collection of homological equivalence relations on a curve of genus 2 as the set of integral solutions of certain algebraic equations. In the present paper we improve one argument of the previous paper, and we study the equations more closely for a curve of genus 2.

Publié le : 2010-10-01
@article{BUMI_2010_9_3_3_505_0,
     author = {Lucio Guerra},
     title = {Remarks About Morphisms on an Algebraic Curve},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {505-519},
     zbl = {1215.14038},
     mrnumber = {2742779},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_505_0}
}
Guerra, Lucio. Remarks About Morphisms on an Algebraic Curve. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 505-519. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_505_0/

[1] Birkenhake, C. - Lange, H., Complex Abelian Varieties, second edition. Springer-Verlag, Berlin, 2004. | MR 2062673 | Zbl 1056.14063

[2] Dickson, L., Introduction to the Theory of Numbers. Dover Publications, New York, 1957. | Zbl 0084.26901

[3] Guerra, L., Morphisms on an algebraic curve and divisor classes in the self product. Boll. Unione Mat. Ital. Sez. B (8) 10, no. 3 (2007), 715-725. | MR 2351541 | Zbl 1139.14030

[4] Hayashida, T. - Nishi, M., Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Japan, 17 (1965), 1-16. | MR 201434 | Zbl 0132.41701

[5] Kani, E., Bounds on the number of nonrational subfields of a function field. Invent. Math., 85 , no. 1 (1986), 185-198. | MR 842053 | Zbl 0615.12017

[6] Kuhn, R., Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc., 307 , no. 1 (1988), 41-49. | MR 936803 | Zbl 0692.14022

[7] Kuusalo, T. - Näätänen, M., Geometric uniformization in genus 2. Ann. Acad. Sci. Fenn. Ser. A I Math., 20, no. 2 (1995), 401-418. | MR 1346823 | Zbl 0856.30031