Density and Tangential Properties of the Graph of Hölder Functions
Biacino, Loredana
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 493-503 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper the circular densities (with respect to the Hausdorff or packing measure) of graphs of Hölder continuous functions are studied. They are related to the local behaviour of the functions making use of some geometric properties.

Publié le : 2010-10-01
@article{BUMI_2010_9_3_3_493_0,
     author = {Loredana Biacino},
     title = {Density and Tangential Properties of the Graph of H\"older Functions},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {493-503},
     zbl = {1213.28003},
     mrnumber = {2742778},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_493_0}
}
Biacino, Loredana. Density and Tangential Properties of the Graph of Hölder Functions. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 493-503. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_493_0/

[1] Besicovitch, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Annalen, 98 (1927) 422-65. | MR 1512414 | Zbl 53.0175.04

[2] Besicovitch, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Annalen, 115 (1938) 296-329. | MR 1513189 | Zbl 0018.11302

[3] Besicovitch, A. S., On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Annalen, 116 (1939) 349-57. | MR 1513231 | Zbl 65.0197.04

[4] Besicovitch, A. S., On tangents to general sets of points, Fundamenta Mathematicae, 22 (1934) 49-53. | Zbl 0008.24802

[5] Besicovitch, A. S. - Ursell, H. D., Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, Journal London Math. Soc., 12 (1937) 18-25. | MR 1574327 | Zbl 63.0184.04

[6] Besicovitch, A. S., On the existence of tangents to rectifiable curves, Journal London Math. Soc., 19 (1945) 205-207. | MR 14413 | Zbl 0061.37203

[7] Biacino, L., Derivatives of fractional order of continuous functions, Ricerche Mat., LIII (2004) 231-254. | MR 2286840 | Zbl 1228.26011

[8] Biacino, L., Hausdorff dimension of the diagram of a-Hölder continuous functions, Ricerche Mat., LIV (2005) 229-243. | MR 2290217

[9] Biacino, L., A note on the box dimension of the graph of a continuous function, submitted for publication. | MR 2533920 | Zbl 1187.28009

[10] Falconer, K. J., The geometry of fractal sets, Cambridge University Press, 1985. | MR 867284 | Zbl 0587.28004

[11] Falconer, K. J., Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons Ltd., New-York, 1990. | MR 1102677

[12] Heurteaux, Y., Weierstrass functions with random phases, Trans. Am. Math. Soc., 355, n. 8 (2003) 3065-3077. | MR 1974675 | Zbl 1031.26009

[13] Martin, M. A. - Mattila, P., Hausdorff measures, Hölder continuous maps and self similar fractals, Math. Proc. Cambridge Philos. Soc., 114 (1993) 37-42. | MR 1219912 | Zbl 0783.28005

[14] Marstrand, J. M., Some fundamental geometrical properties of plane sets of fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302. | MR 63439 | Zbl 0056.05504

[15] Marstrand, J. M., Circular density of plane sets, Journal London Math. Soc., 30 (1954) 238-46. | MR 67964 | Zbl 0064.05103

[16] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. | MR 1333890 | Zbl 0819.28004

[17] Preiss, D., Geometry of measures in 𝐑n: Distribution, rectifiability, and densities, Annals of Mathematics, 125 (1987) 537-643. | MR 890162 | Zbl 0627.28008

[18] Przytycki, F. - Urbanski, M., On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186. | MR 1002918 | Zbl 0691.58029

[19] Tricot, C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982) 57-74. | MR 633256 | Zbl 0483.28010