In this work we consider a class of planar second order Hamiltonian systems: , where a potential has a singularity at a point : , as and the unique global maximum that is achieved at two distinct points . For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around and join to . One of them, , is a heteroclinic orbit joining to . The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from .
@article{BUMI_2010_9_3_3_471_0, author = {Joanna Janczewska}, title = {The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {471-491}, zbl = {1214.37049}, mrnumber = {2742777}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_471_0} }
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 471-491. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_471_0/
[1] X, Birkhäuser Boston, Inc., Boston, MA (1993). | MR 1267225 | Zbl 0785.34032
- , Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol.[2] Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. | MR 1424220 | Zbl 0868.34001
- ,[3] Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. | MR 2163532 | Zbl 1093.70005
,[4] Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. | MR 2228970 | Zbl 1160.37390
,[5] Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. | MR 1443325 | Zbl 0887.34044
- ,[6] Multiple homoclinic solutions for a class of autonomous singular systems in , Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. | MR 1614603
- ,[7] Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. | MR 1746119 | Zbl 0952.37010
- ,[8] Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. | MR 1785684 | Zbl 1026.37054
- ,[9] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | MR 377983 | Zbl 0276.58005
,[10] Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. | MR 928560 | Zbl 0648.34048
,[11] Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. | MR 2183265 | Zbl 1080.37067
- ,[12] Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. | MR 2341430 | Zbl 1117.37033
- ,[13] Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. | MR 1030854 | Zbl 0701.58023
,[14] Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. | MR 1449412 | Zbl 0936.37035
,[15] Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. | MR 1256169 | Zbl 0813.70006
- ,[16] Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. | MR 1289856 | Zbl 0823.34051
,[17] Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. | MR 1294452 | Zbl 0815.34035
,[18] Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. | MR 1138531 | Zbl 0712.58026
,