The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in 𝐑2
Janczewska, Joanna
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 471-491 / Harvested from Biblioteca Digitale Italiana di Matematica

In this work we consider a class of planar second order Hamiltonian systems: q¨+V(q)=0, where a potential V has a singularity at a point ξ𝐑2: V(q)-, as qξ and the unique global maximum 0𝐑 that is achieved at two distinct points a,b𝐑2{ξ}. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around ξ and join {a,b} to {a,b}. One of them, Q, is a heteroclinic orbit joining a to b. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from Q.

Publié le : 2010-10-01
@article{BUMI_2010_9_3_3_471_0,
     author = {Joanna Janczewska},
     title = {The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {471-491},
     zbl = {1214.37049},
     mrnumber = {2742777},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_471_0}
}
Janczewska, Joanna. The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 471-491. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_471_0/

[1] Ambrosetti, A. - Coti Zelati, V., Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993). | MR 1267225 | Zbl 0785.34032

[2] Bertotti, M. L. - Jeanjean, L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. | MR 1424220 | Zbl 0868.34001

[3] Bolotin, S. V., Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. | MR 2163532 | Zbl 1093.70005

[4] Borges, M. J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. | MR 2228970 | Zbl 1160.37390

[5] Caldiroli, P. - Jeanjean, L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. | MR 1443325 | Zbl 0887.34044

[6] Caldiroli, P. - Nolasco, M., Multiple homoclinic solutions for a class of autonomous singular systems in 𝐑2, Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. | MR 1614603

[7] Felmer, P. - Tanaka, K., Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. | MR 1746119 | Zbl 0952.37010

[8] Felmer, P. - Tanaka, K., Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. | MR 1785684 | Zbl 1026.37054

[9] Gordon, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. | MR 377983 | Zbl 0276.58005

[10] Greco, C., Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. | MR 928560 | Zbl 0648.34048

[11] Izydorek, M. - Janczewska, J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. | MR 2183265 | Zbl 1080.37067

[12] Izydorek, M. - Janczewska, J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. | MR 2341430 | Zbl 1117.37033

[13] Rabinowitz, P. H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. | MR 1030854 | Zbl 0701.58023

[14] Rabinowitz, P. H., Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. | MR 1449412 | Zbl 0936.37035

[15] Serra, E. - Terracini, S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. | MR 1256169 | Zbl 0813.70006

[16] Serra, E., Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. | MR 1289856 | Zbl 0823.34051

[17] Serra, E., Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. | MR 1294452 | Zbl 0815.34035

[18] Tanaka, K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. | MR 1138531 | Zbl 0712.58026