We prove a Hahn decomposition theorem for modular measures on pseudo-D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem concerning compactness and convexity of the closure of the range.
@article{BUMI_2010_9_3_3_447_0, author = {Anna Avallone and Giuseppina Barbieri and Paolo Vitolo}, title = {Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {447-470}, zbl = {1229.03053}, mrnumber = {2742776}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_3_447_0} }
Avallone, Anna; Barbieri, Giuseppina; Vitolo, Paolo. Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 447-470. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_3_447_0/
[1] Range of finitely additive fuzzy measures, Fuzzy Sets and Systems, 89 (2) (1997), 231-241. | MR 1456048 | Zbl 0918.28020
- ,[2] Lyapunov measures on effect algebras, Comment. Math. Univ. Carolin., 44 (2003), 389-397. | MR 2025808 | Zbl 1097.22002
- ,[3] Pseudo-D-lattices and topologies generated by measures, Ital. J. Pure Appl. Math., To appear. | MR 3009591 | Zbl 1329.28023
- ,[4] Hahn decomposition of modular measures and applications, Comment. Math. Prace Mat., 43 (2003), 149-168. | MR 2029889 | Zbl 1043.28009
- - ,[5] Lyapunov's theorem for measures on D-posets, Internat. J. Theoret. Phys., 43 (2004), 1613-1623. | MR 2108298 | Zbl 1081.81007
,[6] Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday, Found. Phys., 24 (10) (1994), 1331-1352. | MR 1304942
- ,[7] | MR 2867321 | Zbl 0804.90145
- , Triangular Norm-based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht, 1993.[8] D-posets, Math. Slovaca, 44 (1) (1994), 21-34. | MR 1290269
- ,[9] Central elements and Cantor-Bernstein theorem for pseudo-effect algebras, Journal of the Australian Mathematical Society, 74 (2003), 121-143. | MR 1948263
,[10] | MR 1861369
- PULMANNOVÁ, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000.[11] Congruences and states on pseudoeffect algebras, Found. Phys. Letters, 14 (2001), 425-446. | MR 1857794
- ,[12] Subjective probabilities on subjectively unambiguous events, Econometrica, 69 (2) (2001), 265-306. | MR 1819756 | Zbl 1020.91048
- ,[13] Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (2001), 97-114. | MR 1934824 | Zbl 0986.06018
- ,[14] Generalized Sasaki projections and Riesz ideals in pseudoeffect algebras, International Journal of Theoretical Physics, 42 (7) (2003), 1413-1423. | MR 2021220 | Zbl 1053.81008
,[15] A remark on Lyapunov's theorem on a vector measure, Funct. Anal. Appl., 25 (4) (1991), 295-297. | MR 1167727 | Zbl 0762.46031
,[16] Pseudo difference posets and pseudo Boolean D-posets, Internat. J. Theoret. Phys., 43 (12) (2004), 2447-2460. | MR 2110077 | Zbl 1059.81018
- - ,[17] The range of a vector-valued measure, Proc. Amer. Math. Soc., 23 (1969), 158-163. | MR 264029 | Zbl 0182.46903
,[18] Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings, Ann. Mat. Pura Appl., 160 (4) (1991), 347-370. | MR 1163215 | Zbl 0790.06006
,[19] On modular functions, Funct. Approx. Comment. Math., 24 (1996), 35-52. | MR 1453447 | Zbl 0887.06011
,[20] Uniform lattices and modular functions, Atti Sem. Mat. Fis. Univ. Modena, 47 (1) (1999), 159-182. | MR 1694416 | Zbl 0989.28007
,