Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
Soravia, Pierpaolo
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 391-406 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider viscosity and distributional derivatives of functions in the directions of a family of vector fields, generators of a Carnot-Carathèodory (C-C in brief) metric. In the framework of convex and non coercive Hamilton-Jacobi equations of C-C type we show that viscosity and a.e. subsolutions are equivalent concepts. The latter is a concept related to Lipschitz continuity with respect to the metric generated by the family of vector fields. Under more restrictive assumptions that include Carnot groups, we prove that viscosity solutions of C-C HJ equations are Lipschitz continuous with respect to the corresponding Carnot-Carathèodory metric and satisfy the equation a.e.

Publié le : 2010-06-01
@article{BUMI_2010_9_3_2_391_0,
     author = {Pierpaolo Soravia},
     title = {Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carath\`eodory Hamilton-Jacobi Equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {391-406},
     zbl = {1195.49034},
     mrnumber = {2666366},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_2_391_0}
}
Soravia, Pierpaolo. Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 391-406. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_2_391_0/

[1] Bardi, M. - Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. | MR 1484411 | Zbl 0890.49011

[2] Bardi, M. - Soravia, P., Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229. | MR 991958 | Zbl 0732.35013

[3] Bieske, T., On -harmonic functions on the Heisenberg group, Comm. in PDE, 27 (2002), 727-761. | MR 1900561 | Zbl 1090.35063

[4] Bonfiglioli, A. - Lanconelli, E. - Uguzzoni, F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). | MR 2363343 | Zbl 1128.43001

[5] Crandall, M. G. - Ishii, H. - Lions, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, no. 1 (1992), 1-67. | MR 1118699 | Zbl 0755.35015

[6] Crandall, M. G. - Lions, P. L., Viscosity solutions of Hamilton Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. | MR 690039 | Zbl 0599.35024

[7] Dragoni, F., Limiting behavior of solutions of subelliptic heat equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 429-441. | MR 2364902 | Zbl 1152.35064

[8] Dragoni, F., Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst., 17 (2007), 713-729. | MR 2276470 | Zbl 1122.35023

[9] Franchi, B. - Serapioni, R. - Serra Cassano, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. | MR 1437714 | Zbl 0876.49014

[10] Franchi, B. - Serapioni, R. - Serra Cassano, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. | MR 1448000 | Zbl 0952.49010

[11] Franchi, B. - Hajlasz, P. - Koskela, P., Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924. | MR 1738070 | Zbl 0938.46037

[12] Garavello, M. - Soravia, P., Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. | MR 2281799 | Zbl 1123.49033

[13] Garofalo, N. - Nhieu, D. M., Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Carathèodory spaces, J. d'Analyse Mathematique, 74 (1998), 67-97. | MR 1631642 | Zbl 0906.46026

[14] Lions, P. L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69Pitman, Boston, Mass.-London, 1982. | MR 667669 | Zbl 0497.35001

[15] Monti, R., Distances, boundaries and surface measures in Carnot-Carathèodory spaces, PhD Thesis Series31, Dipartimento di Matematica Università degli Studi di Trento, 2001.

[16] Monti, R. - Serra Cassano, F., Surface measures in Carnot-Carathèodory spaces, Calc. Var. Partial Differential Equations 13, no. 3 (2001), 339-376. | MR 1865002 | Zbl 1032.49045

[17] Pansu, P., Métriques de Carnot-Carathèodory et quasiisomtries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60. | MR 979599

[18] Soravia, P., Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12, no. 2 (1999), 275-293. | MR 1672758 | Zbl 1007.49016

[19] Soravia, P., Comparison with generalized cones, existence of absolute minimizers and viscosity solutions of space dependent Aronsson equations, preprint. | MR 2996163 | Zbl 1264.35097

[20] Wang, C., The Aronsson equation for absolute minimizers of L1-functionals associated with vector fields satisfying Hormander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113. | MR 2247884 | Zbl 1192.35038