Let be the Mordell-Weil group of a rational elliptic surface and let be its rank. In this note we classify all the rational elliptic surfaces with Mordell-Weil group of rank over an algebraically closed field of arbitrary characteristic and using the theory of Mordell-Weil lattices, we find systems of generators for in the coordinate-free situation.
@article{BUMI_2010_9_3_2_363_0, author = {Davide Fusi and Andrea Luigi Tironi}, title = {On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {363-379}, zbl = {1200.14069}, mrnumber = {2666364}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_2_363_0} }
Fusi, Davide; Tironi, Andrea Luigi. On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 363-379. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_2_363_0/
[1] | MR 573068
, Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Hermann, Paris, 1968.[2] 290 (Springer-Verlag, 1988). | MR 920369 | Zbl 0634.52002
- , Sphere packings, Lattices and Groups. Grund. Math. Wiss.,[3] Construction of linear pencils of cubic curves with Mordell-Weil rank six and seven. Comment. Math. Univ. St. Paul., 55, no. 2 (2006), 195-205. | MR 2294928 | Zbl 1132.14034
,[4] The Tate height of points on an Abelian variety, its invariant and applications. Ivz. Akad. Nauk SSSR Ser. mat., 28 (1964), 1363-1390; A.M.S. Transl. (2), 59 (1966), 82-110. | MR 173676
,[5] | MR 1078016 | Zbl 0744.14026
, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research] ETS Editrice, Pisa, 1989.[6] The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul., 40, no. 1 (1991), 83-99. | MR 1104782 | Zbl 0757.14011
- ,[7] On the Mordell-Weil Lattices. Comment. Math. Univ. St. Paul., 39, no. 2 (1990), 211-240. | MR 1081832 | Zbl 0725.14017
,