We extend the main result of CHOW-LASOTA [1] to evolution equations and show some applications of the outcome.
@article{BUMI_2010_9_3_2_325_0, author = {Giovanni Vidossich}, title = {Chow-Lasota Theorem for BVPs of Evolution Equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {325-335}, zbl = {1204.34082}, mrnumber = {2666361}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_2_325_0} }
Vidossich, Giovanni. Chow-Lasota Theorem for BVPs of Evolution Equations. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 325-335. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_2_325_0/
[1] On boundary value problems for ordinary differential equations, J. Diff. Eqs., 14 (1973), 326-337. | MR 330598 | Zbl 0285.34009
- ,[2] On the existence and uniqueness of solutions of a multipoint boundary value problem, Annales Polon. Math., 38 (1980), 305-310. | MR 599255 | Zbl 0458.34010
,[3] On Hammerstein integral equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 59 (1975), 65-67. | MR 450914 | Zbl 0345.45007
- ,[4] | MR 493564
, Degree Theory, Cambridge University Press (Cambridge, 1978).[5] Dissipative operators in Banach space, Pacific J. Math., 11 (1961), 679-698. | MR 132403 | Zbl 0101.09503
- ,[6] A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. | MR 374996 | Zbl 0305.47022
,[7] | MR 710486 | Zbl 0516.47023
, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag (New York, 1983).[8] | MR 740539 | Zbl 0535.34001
- - , Ordinary Differential Equations in (Problems and Methods), Springer-Verlag (New York, 1984).[9] Differential inequalities for evolution equations, Nonlinear Analysis TMA, 25 (1995), 1063-1069. | MR 1350729 | Zbl 0846.34062
,[10] An addition and a correction to my paper "Differential inequalities for evolution equations", Nonlinear Anal. TMA, 72 (2010), 618-623. | MR 2579329 | Zbl 1178.47028
,[11] On the continuous dependence of solutions of boundary value problems for ordinary differential equations, J. Diff. Eqs., 82 (1989), 1-14. | MR 1023298 | Zbl 0725.34007
,[12] Smooth dependence on initial data of mild solutions to evolution equations, Boll. Unione Mat. Ital. (serie 9), 2 (2009), 731-754. | MR 2569301 | Zbl 1186.65066
,[13] Boundary value problems for differential equations in Banach space, J. Math. Anal. Appl., 70 (1979), 589-598. | MR 543596 | Zbl 0438.34057
JR.,[14] Semilinear boundary value problems in Banach space, in "Nonlinear Equations in Abstract Spaces", ed. , Academic Press (New York, 1978), 469-477. | MR 502540
JR.,