We consider canonical fibrations and algebraic geometric structures on homogeneous CR manifolds, in connection with the notion of CR algebra. We give applications to the classifications of left invariant CR structures on semisimple Lie groups and of CR-symmetric structures on complete flag varieties.
@article{BUMI_2010_9_3_2_221_0, author = {Andrea Altomani and Costantino Medori and Mauro Nacinovich}, title = {On Homogeneous and Symmetric CR Manifolds}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {221-265}, zbl = {1214.32009}, mrnumber = {2666357}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_2_221_0} }
Altomani, Andrea; Medori, Costantino; Nacinovich, Mauro. On Homogeneous and Symmetric CR Manifolds. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 221-265. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_2_221_0/
[1] The CR structure of minimal orbits in complex flag manifolds, J. Lie Theory, 16, no. 3 (2006), 483-530. | MR 2248142 | Zbl 1120.32023
- - ,[2] Orbits of real forms in complex flag manifolds, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (5) vol. IX (2010), 1-41. | MR 2668874
- - ,[3] Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6, no. 2 (1979), 285-304. | MR 541450 | Zbl 0449.32008
- ,[4] Homogeneous CR-manifolds, J. Reine Angew. Math., 358 (1985), 125-154. | MR 797679
- - ,[5] 47, Princeton University Press, Princeton, NJ, 1999. | MR 1668103 | Zbl 0944.32040
- - , Real submanifolds in complex space and their mappings, vol.[6] A geometric characterization of points of type m on real submanifolds of , J. Differential Geometry, 12, no. 2 (1977), 171-182. | MR 492369 | Zbl 0436.32013
- ,[7] Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., no. 27 (1965), 55-150. | MR 207712
- ,[8] 1337, Hermann, Paris, 1968. | MR 240238 | Zbl 0186.33001
, Éléments de mathématique. Fasc. XXXIV. Groupes et algébres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrès par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No.[9] Classification des structures CR invariantes pour les groupes de Lie compacts, J. Lie Theory, 14, no. 1 (2004), 165-198. | MR 2040175 | Zbl 1058.22016
- ,[10] A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531. | MR 9604 | Zbl 0060.03602
,[11] Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100. | MR 19603 | Zbl 0032.25202
,[12] 1226, Hermann Cie, Paris, 1955. | MR 68552 | Zbl 0186.33104
, Théorie des groupes de Lie. Tome III. Théorémes généraux sur les algèbres de Lie, Actualités Sci. Ind. no.[13] Locally homogeneous finitely nondegenerate CR-manifolds, Math. Res. Lett., 14, no. 6 (2007), 893-922. | MR 2357464 | Zbl 1155.32027
,[14] On extrinsic symmetric CR-structures on the manifolds of complete flags, Beiträge Algebra Geom., 45, no. 2 (2004), 401-414. | MR 2093174
- ,[15] Fibrations and globalizations of compact homogeneous CR-manifolds, Izv. Math. 73 (2009), 501-553. | MR 2553089 | Zbl 1172.32011
- ,[16] On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45. | MR 28306
,[17] An addition to Ado's theorem, Proc. Amer. Math. Soc., 17 (1966), 531-533. | MR 194482 | Zbl 0143.05205
,[18] 75, Springer-Verlag, New York, 1981. | MR 620024 | Zbl 0589.20025
, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol.[19] 9. | MR 323842 | Zbl 0254.17004
, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972, Graduate Texts in Mathematics, Vol.[20] On symmetric Cauchy-Riemann manifolds, Adv. Math., 149, no. 2 (2000), 145-181. | MR 1742704 | Zbl 0954.32016
- ,[21] 140, Birkhäuser Boston Inc. (Boston, MA, 2002). | MR 1920389 | Zbl 1075.22501
, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol.[22] Complex and CR-structures on compact Lie groups associated to abelian actions, Ann. Global Anal. Geom., 32, no. 4 (2007), 361-378. | MR 2346223 | Zbl 1132.32008
- - ,[23] On a class of symmetric CR manifolds, Adv. Math., 191, no. 1 (2005), 114-146. | MR 2102845 | Zbl 1068.53035
- ,[24] CR-admissible Z2-gradations and CR-symmetries, Ann. Mat. Pura Appl. (4), 187, no. 2 (2008), 221-236. | MR 2372800 | Zbl 1223.32021
- ,[25] Classification of semisimple Levi-Tanaka algebras, Ann. Mat. Pura Appl. (4), 174 (1998), 285-349. | MR 1746933 | Zbl 0999.17039
- ,[26] Complete nondegenerate locally standard CR manifolds, Math. Ann., 317, no. 3 (2000), 509-526. | MR 1776115 | Zbl 1037.32031
- ,[27] The Levi-Malcev theorem for graded CR Lie algebras, Recent advances in Lie theory (Vigo, 2000), Res. Exp. Math., vol. 25 (Heldermann, Lemgo, 2002), 341-346. | MR 1937989 | Zbl 1028.32017
- ,[28] Algebras of infinitesimal CR automorphisms, J. Algebra, 287, no. 1 (2005), 234-274. | MR 2134266 | Zbl 1132.32013
- ,[29] Fully reducible subgroups of algebraic groups, Amer. J. Math., 78 (1956), 200-221. | MR 92928 | Zbl 0073.01603
,[30] Lie groups and Lie algebras. I, Encyclopaedia of Mathematical Sciences, vol. 20 (Springer-Verlag, Berlin, 1993).
(ed.),[31] Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies, 59, no. 1 (1973), 131-145, Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol I: Geometry of singularities. | MR 330514
,[32] Invariant complex structures on reductive Lie groups, J. Reine Angew. Math., 371 (1986), 191-215. | MR 859325 | Zbl 0588.22007
,[33] Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41 (Springer-Verlag, Berlin, 1994).
(ed.), , Harmonic analysis on semi-simple Lie groups I (Springer-Verlag, New York, 1972).