By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus , we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.
@article{BUMI_2010_9_3_1_93_0, author = {C. Ciliberto and E. Sernesi}, title = {Projective Geometry Related to the Singularities of Theta Divisors of Jacobians}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {93-109}, zbl = {1203.14064}, mrnumber = {2605913}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_93_0} }
Ciliberto, C.; Sernesi, E. Projective Geometry Related to the Singularities of Theta Divisors of Jacobians. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 93-109. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_93_0/
[1] On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa, 21 (3) (1967), 189-238. | MR 220740 | Zbl 0222.14024
- ,[2] I, Grundlehren der math. Wisensch, 267 (Springer-Verlag, 1984). | MR 2807457
- - - , Geometry of algebraic curves, Volume[3] Canonical curves and quadrics of rank 4, Compositio Math., 43 (1981), 145-179. | MR 622446 | Zbl 0494.14011
- ,[4] Focal varieties of curves of genus 6 and 8, preprint. | MR 2639443 | Zbl 1194.14047
,[5] Andreotti-Mayer Loci and the Schottky Problem, Documenta Math., 13 (2008), 453-504. | MR 2520473
- ,[6] Singularities of the theta divisor and congruences of planes, J. Algebraic Geom., 1 (1992), 231-250. | MR 1144438 | Zbl 0787.14019
- ,[7] Singularities of the Theta Divisor and Families of Secant Spaces to a Canonical Curve, J. Algebra, 171 (1995), 867-893. | MR 1315925 | Zbl 0827.14016
- ,[8] On the geometry of canonical curves of odd genus, Comm. in Alg., 28 (12) (2000), 5993-6002. | MR 1808615 | Zbl 1005.14011
- ,[9] Sur le contact des courbes et des surfaces, Bull. Soc. math. de France, 4 (2) (1880). | Zbl 12.0590.01
,[10] Linear sections of determinantal varieties, American J. of Math., 110 (1988), 541-575. | MR 944327 | Zbl 0681.14028
,[11] Quadrics of rank four in the ideal of the canonical curve, Invent. Math., 75 (1984), 85-104. | MR 728141 | Zbl 0542.14018
,[12] Varieties with many lines, Manuscripta math., 82 (1994), 207-226. | MR 1256160 | Zbl 0812.14038
,[13] Sulle contenenti più di , Nota II, Rend. Accad. Naz. Lincei, 5 (8) (1948), 275-280. | MR 36042
,[14] Sui fochi di 2° ordine dei sistemi infiniti di piani, e sulle curve iperspaziali con una doppia infinità di piani plurisecanti. Atti R. Accad. Lincei, 30 (5) (1921), 67-71. | Zbl 48.0849.02
,