Differential Equations and Para-CR Structures
Hill, C. Denson ; Nurowski, Paweł
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 25-91 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the local geometry of n dimensional manifolds which are equipped with two integrable distributions, one of dimension r and one of dimension s, where r and s are allowed to be unequal. We call them para-CR structures of type (k,r,s), with k=n-r-s0 being the para-CR codimension. When r=s they are the real analogues of CR structures. In the general case these structures are the natural geometric setting in which to discuss the geometry of systems of ODE's, as well as the geometry of systems of PDE's of finite type. For particular small values of k,r,s we determine the basic local invariants of such structures.

Publié le : 2010-02-01
@article{BUMI_2010_9_3_1_25_0,
     author = {C. Denson Hill and Pawe\l\ Nurowski},
     title = {Differential Equations and Para-CR Structures},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {25-91},
     zbl = {1206.58001},
     mrnumber = {2605912},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_25_0}
}
Hill, C. Denson; Nurowski, Paweł. Differential Equations and Para-CR Structures. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 25-91. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_25_0/

[1] Alekseevsky, D. V. - Medori, C. - Tomassini, A., Maximally homogeneous para-CR manifolds of semisimple type, to appear in Handbook of Pseudo-Riemannian geometry and Supersymmetry (2008), arXiv:0808.0431 | MR 2681601

[2] Cartan, E., Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du seconde ordre, Ann. Sc. Norm. Sup., 27 (1910), 109-192. | MR 1509120 | Zbl 41.0417.01

[3] Cartan, E., Varietés à connexion projective, Bull. Soc. Math., LII (1924), 205-241. | MR 1504846 | Zbl 50.0500.02

[4] Chern, S. S., The geometry of the differential equations y′′′=F(x,y,yy′′), Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111. | MR 4538

[5] Fefferman, C. - Graham, C. R., Conformal invariants, in Elie Cartan et mathematiques d'aujourd'hui, Asterisque, hors serie (Societe Mathematique de France, Paris) (1985), 95-116. | MR 837196

[6] Fritelli, S. - Kozameh, C. N. - Newman, E. T., GR via characteristic surfaces, J. Math. Phys., 36 (1995), 4984-. | MR 1347127 | Zbl 0848.53045

[7] Fritelli, S. - Newman, E. T. - Nurowski, P., Conformal Lorentzian metrics on the spaces of curves and 2-surfaces, Class. Q. Grav., 20 (2003), 3649-3659. | MR 2001687 | Zbl 1050.83021

[8] Godlinski, M., Geometry of Third-Order Ordinary Differential Equations and Its Applications in General Relativity, PhD Thesis, Warsaw University (2008), arXiv: 0810.2234.

[9] Godlinski, M. - Nurowski, P., Geometry of third-order ODEs (2009), arXiv: 0902.4129. | MR 2501740

[10] Gover, A. R. - Nurowski, P., Obstructions to conformally Einstein metrics in n dimensions, Journ. Geom. Phys., 56 (2006), 450-484. | MR 2171895 | Zbl 1098.53014

[11] Lie, S., Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III, in Gesammelte Abhandlungen, Vol. 5 (Teubner, Leipzig, 1924). | Zbl 15.0751.03

[12] Leistner, Th. - Nurowski, P., Ambient metrics for n-dimensional pp-waves (2008), arXiv:0810.2903. | MR 2628825 | Zbl 1207.53028

[13] Lewandowski, J., Reduced holonomy group and Einstein equations with a cosmological constant, Class. Q. Grav., 9 (1992), L147-L151. | MR 1184492 | Zbl 0773.53051

[14] Nurowski, P., Differential equations and conformal structures, Journ. Geom. Phys., 55 (2005), 19-49. | MR 2157414 | Zbl 1082.53024

[15] Nurowski, P. - Robinson, D. C., Intrinsic geometry of a null hypersurface, Class. Q. Grav., 17 (2000), 4065-4084. | MR 1789400 | Zbl 1085.53504

[16] Nurowski, P. - Sparling, G. A. J., Three dimensional Cauchy-Riemann structures and second order ordinary differential equations, Class. Q. Grav., 20 (2003), 4995-5016. | MR 2024797 | Zbl 1051.32019

[17] Olver, P. J., Equivalence Invariants and Symmetry, Cambridge University Press (Cambridge, 1996). | MR 1337276 | Zbl 1156.58002

[18] Perkins, K., The Cartan-Weyl conformal geometry of a pair of second-order partial-differential equations, PhD Thesis, Department of Physics & Astronomy (University of Pittsburgh, 2006).

[19] Tanaka, N., On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 14 (1985), 277-351. | MR 808817 | Zbl 0585.53044

[20] Tresse, M. A., Determinations des invariants ponctuels de l'equation differentielle ordinaire du second ordre y′′=ω(x,y,y), Hirzel (Leipzig, 1896). | Zbl 27.0254.01

[21] Wuè Nschmann, K., Über Beruhrungsbedingungen bei Differentialgleichungen, Dissertation (Greifswald, 1905).