A Remark on the Stability of the Determinant in Bidimensional Homogenization
Farroni, Fernando ; Murat, François
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 209-215 / Harvested from Biblioteca Digitale Italiana di Matematica

For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence Aϵ of matrices H-converges to A0 (or in other terms if Aϵ converges to A0 in the sense of homogenization) and if detAϵ tends to c0 a.e., then one has detA0=c0.

Publié le : 2010-02-01
@article{BUMI_2010_9_3_1_209_0,
     author = {Fernando Farroni and Fran\c cois Murat},
     title = {A Remark on the Stability of the Determinant in Bidimensional Homogenization},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {209-215},
     zbl = {1194.35447},
     mrnumber = {2605920},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_209_0}
}
Farroni, Fernando; Murat, François. A Remark on the Stability of the Determinant in Bidimensional Homogenization. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 209-215. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_209_0/

[1] Boccardo, L. - Murat, F., Homogénéisation de problèmes quasi-linéaires, in Atti del convegno: Studio di problemi-limite della analisi funzionale, Bressanone, settembre 1981, Pitagora, Bologna (1982), 13-51.

[2] Briane, M. - Manceau, D. - Milton, G. W., Homogenization of the two-dimensional Hall effect, J. Math. Anal. Appl., 339 , 2 (2008), 1468-1484. | MR 2377101 | Zbl 1206.78090

[3] Dykhne, A. M., Conductivity of a two dimensional two-phase system, A. Nauk. SSSR, 59 (1970), 110-115.

[4] Francfort, G. A. - Murat, F., Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media, in Nonclassical continuum mechanics (Durham, 1986), R. J. Knops and A. A. Lacey, eds., London Mathematical Society Lecture Notes Series 122 (Cambridge University Press, Cambridge, 1987), 197-212. | MR 926503

[5] Keller, J. B., A theorem on conductivity of composite medium, J. Mathematical Phys., 5, 4 (1964), 548-549. | MR 161559 | Zbl 0129.44001

[6] Marino, A. - Spagnolo, S., Un tipo di approssimazione dell'operatore i,j=1nDi(aij(x)Dj) con operatori j=1nDj(β(x)Dj), Annali della Scuola Normale Superiore di Pisa 23, 4 (1969), 657-673. | MR 278128

[7] Mendelson, K. S., A theorem on the effective conductivity of a two-dimensional heterogeneous medium, J. of Applied Physics, 46 , 11 (1975), 4740-4741.

[8] Milton, G. W., The theory of composites, Cambridge Monographs in Applied and Computational Mathematics6 , Cambridge University Press (Cambridge, 2002). | MR 1899805 | Zbl 0993.74002

[9] Murat, F., H-convergence, Séminaire d'analyse fonctionnelle et numérique 1977-78, Université d'Alger. English translation: Murat, F. - Tartar, L., H-convergence, in Topics in the mathematical modelling of composite materials, A. Cherkaev - R. V. Kohn, eds., Progress in Nonlinear Differential Equations and their Applications, 31 (Birkhäuser, Boston, 1997), 21-43. | MR 1493039

[10] Sbordone, C., Γ-convergence and G-convergence, Rend. Sem. Mat. Univ. Politec. Torino, 40 (1983), 25-51. | MR 724198

[11] Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Annali della Scuola Normale Superiore di Pisa, 22, 3 (1968), 571-597. | MR 240443

[12] Tartar, L., The general theory of homogenization, A personalized introduction, Lecture Notes of the Unione Matematica Italiana, 7 (Springer-Verlag, Berlin, 2010). | MR 2582099 | Zbl 1188.35004