Approximation of Anisotropic Perimeter Functionals by Homogenization
Ansini, N. ; Iosifescu, O.
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 149-168 / Harvested from Biblioteca Digitale Italiana di Matematica

We show that all anisotropic perimeter functionals of the form EΩφ(νE)𝑑n-1 (φ convex and positively homogeneous of degree one) can be approximated in the sense of Γ-convergence by (limits of) isotropic but inhomogeneous perimeter functionals of the form EΩa(x/ϵ)𝑑n-1 (a periodic).

Publié le : 2010-02-01
@article{BUMI_2010_9_3_1_149_0,
     author = {N. Ansini and O. Iosifescu},
     title = {Approximation of Anisotropic Perimeter Functionals by Homogenization},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {149-168},
     zbl = {1196.49032},
     mrnumber = {2605917},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_149_0}
}
Ansini, N.; Iosifescu, O. Approximation of Anisotropic Perimeter Functionals by Homogenization. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 149-168. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_149_0/

[1] Acerbi, E. - Buttazzo, G., On the limits of periodic Riemannian metrics, J. Anal. Math., 43 (1984), 183-201. | MR 777417 | Zbl 0564.49025

[2] Almgren, F. J. - Taylor, J. E., Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22. | MR 1350693 | Zbl 0867.58020

[3] Ambrosio, L. - Braides, A., Functionals defined on partitions of sets of finite perimeter I: integral representation and Γ-convergence, J. Math. Pures Appl., 69 (1990), 285-305. | MR 1070481 | Zbl 0676.49028

[4] Ambrosio, L. - Braides, A., Functionals defined on partitions of sets of finite perimeter II: semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307-333. | MR 1070482 | Zbl 0676.49029

[5] Ambrosio, L. - Fusco, N. - Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford University Press, 2000. | MR 1857292 | Zbl 0957.49001

[6] Ansini, N. - Braides, A. - Chiadò Piat, V., Gradient theory of phase transitions in composite media, Proc. Royal Soc. Edinburgh A, 133 (2003), 265-296. | MR 1969814 | Zbl 1031.49021

[7] Bellettini, G. - Goglione, R. - Novaga, M., Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493. | MR 1769163 | Zbl 0979.53075

[8] Bellettini, G. - Novaga, M., Approximation and comparison for nonsmooth anisotropic motion by mean curvature in n, Math. Mod. Meth. Appl. Sc., 10 (2000), 1-10. | MR 1749692 | Zbl 1016.53048

[9] Bouchitté, G. - Fonseca, I. - Leoni, G. - Mascarenhas, L., A global method for relaxation in W1,p and in SBVp, Arch. Rational Mech. Anal., 165, 3 (2002), 187-242. | MR 1941478

[10] Braides, A., Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics (Springer Verlag, Berlin, 1998). | MR 1651773 | Zbl 0909.49001

[11] Braides, A. - Buttazzo, G. - Fragalà, I., Riemannian approximation of Finsler metrics, Asymptot. Anal., 31 (2002), 117-187. | MR 1938603 | Zbl 1032.49020

[12] Braides, A. - Chiadò Piat, V., Integral representation results for functionals defined on SBV(Ω,m), J. Math. Pures Appl., 75 (1996), 595-626. | MR 1423049 | Zbl 0880.49010

[13] Braides, A. - Defranceschi, A., Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998. | MR 1684713 | Zbl 0911.49010

[14] Braides, A. - Maslennikov, M. - Sigalotti, L., Homogenization by blow-up. Applicable Anal., 87 (2008), 1341-1356. | MR 2482386 | Zbl 1171.35315

[15] Dal Maso, G., An Introduction to Γ-convergence, Birkhäuser, Boston, 1993. | MR 1201152 | Zbl 0816.49001

[16] Davini, A., On the relaxation of a class of functionals defined on Riemannian distances, J. Convex Anal., 12 (2005), 113-130. | MR 2135800 | Zbl 1078.49012

[17] Davini, A., Smooth approximation of weak Finsler metrics, Differential Integral Equations, 18 (2005), 509-530. | MR 2136977 | Zbl 1212.41092

[18] Giusti, E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. | MR 775682 | Zbl 0545.49018

[19] Federer, H., Geometric Measure Theory, Springer Verlag, Berlin, 1968. | MR 257325 | Zbl 0874.49001

[20] Modica, L. - Mortola, S., Un esempio di Γ-convergenza, Boll. Un. Mat. Ital., 14-B (1977), 285-299. | MR 445362

[21] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. | MR 866718 | Zbl 0616.76004

[22] Taylor, J. E., Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588. | MR 493671 | Zbl 0392.49022

[23] Taylor, J. E., Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, eds. B. Lawson and K. Tanenblat, Pitman Monographs in Pure and Applied Math., 52 (Pitman, 1991), 321-336. | MR 1173051 | Zbl 0725.53011

[24] Taylor, J. E., Mean curvature and weighted mean curvature II, Acta Metall. Mater., 40 (1992) 1475-1485.

[25] Taylor, J. E., Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math., 54 (1993) 417-438. | MR 1216599 | Zbl 0823.49028