We show that all anisotropic perimeter functionals of the form ( convex and positively homogeneous of degree one) can be approximated in the sense of -convergence by (limits of) isotropic but inhomogeneous perimeter functionals of the form ( periodic).
@article{BUMI_2010_9_3_1_149_0, author = {N. Ansini and O. Iosifescu}, title = {Approximation of Anisotropic Perimeter Functionals by Homogenization}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {149-168}, zbl = {1196.49032}, mrnumber = {2605917}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_149_0} }
Ansini, N.; Iosifescu, O. Approximation of Anisotropic Perimeter Functionals by Homogenization. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 149-168. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_149_0/
[1] On the limits of periodic Riemannian metrics, J. Anal. Math., 43 (1984), 183-201. | MR 777417 | Zbl 0564.49025
- ,[2] Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22. | MR 1350693 | Zbl 0867.58020
- ,[3] Functionals defined on partitions of sets of finite perimeter I: integral representation and -convergence, J. Math. Pures Appl., 69 (1990), 285-305. | MR 1070481 | Zbl 0676.49028
- ,[4] Functionals defined on partitions of sets of finite perimeter II: semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307-333. | MR 1070482 | Zbl 0676.49029
- ,[5] | MR 1857292 | Zbl 0957.49001
- - , Functions of bounded variation and free discontinuity problems, Oxford University Press, 2000.[6] Gradient theory of phase transitions in composite media, Proc. Royal Soc. Edinburgh A, 133 (2003), 265-296. | MR 1969814 | Zbl 1031.49021
- - ,[7] Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493. | MR 1769163 | Zbl 0979.53075
- - ,[8] Approximation and comparison for nonsmooth anisotropic motion by mean curvature in , Math. Mod. Meth. Appl. Sc., 10 (2000), 1-10. | MR 1749692 | Zbl 1016.53048
- ,[9] A global method for relaxation in and in , Arch. Rational Mech. Anal., 165, 3 (2002), 187-242. | MR 1941478
- - - ,[10] | MR 1651773 | Zbl 0909.49001
, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics (Springer Verlag, Berlin, 1998).[11] Riemannian approximation of Finsler metrics, Asymptot. Anal., 31 (2002), 117-187. | MR 1938603 | Zbl 1032.49020
- - ,[12] Integral representation results for functionals defined on , J. Math. Pures Appl., 75 (1996), 595-626. | MR 1423049 | Zbl 0880.49010
- ,[13] | MR 1684713 | Zbl 0911.49010
- , Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998.[14] Homogenization by blow-up. Applicable Anal., 87 (2008), 1341-1356. | MR 2482386 | Zbl 1171.35315
- - ,[15] | MR 1201152 | Zbl 0816.49001
, An Introduction to -convergence, Birkhäuser, Boston, 1993.[16] On the relaxation of a class of functionals defined on Riemannian distances, J. Convex Anal., 12 (2005), 113-130. | MR 2135800 | Zbl 1078.49012
,[17] Smooth approximation of weak Finsler metrics, Differential Integral Equations, 18 (2005), 509-530. | MR 2136977 | Zbl 1212.41092
,[18] | MR 775682 | Zbl 0545.49018
, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.[19] | MR 257325 | Zbl 0874.49001
, Geometric Measure Theory, Springer Verlag, Berlin, 1968.[20] Un esempio di -convergenza, Boll. Un. Mat. Ital., 14-B (1977), 285-299. | MR 445362
- ,[21] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. | MR 866718 | Zbl 0616.76004
,[22] Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588. | MR 493671 | Zbl 0392.49022
,[23] Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, eds. and , Pitman Monographs in Pure and Applied Math., 52 (Pitman, 1991), 321-336. | MR 1173051 | Zbl 0725.53011
,[24] Mean curvature and weighted mean curvature II, Acta Metall. Mater., 40 (1992) 1475-1485.
,[25] Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math., 54 (1993) 417-438. | MR 1216599 | Zbl 0823.49028
,