We present a q-analogue of the Rhin-Viola method for the analysis of -adic valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral representation of the Heine series . Moreover, we show that this approach yields the best known irrationality measures for , and .
@article{BUMI_2010_9_3_1_137_0, author = {Ville Meril\"a}, title = {q-Hypergeometric Functions and Irrationality Measures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {137-148}, zbl = {1208.11085}, mrnumber = {2605916}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_137_0} }
Merilä, Ville. q-Hypergeometric Functions and Irrationality Measures. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 137-148. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_137_0/
[1] Special functions, Encyclopedia of Mathematics and Its Applications, 71 (Cambridge University Press, Cambridge, 1999), xvi+664. | MR 1688958
- - ,[2] Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of , Lect. Notes in Math., 925 (1982), 299-322. | MR 659875
,[3] Legendre type polynomials and irrationality measures, J. Reine Angew. Math., 407 (1990), 99-125. | MR 1048530
,[4] New irrationality measures for q-logarithms, Math.Comp., 75, no. 254 (2006), 879-889. | MR 2196997 | Zbl 1158.11033
- - ,[5] On arithmetical properties of certain q-series, Results Math., 53, no. 1-2 (2009), 129-151. | MR 2481409 | Zbl 1192.11041
,[6] On a permutation group related to , Acta Arith., 77, no. 1 (1996), 23-56. | MR 1404975 | Zbl 0864.11037
- ,[7] Hypergeometric functions and irrationality measures, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247 (Cambridge Univ. Press, Cambridge, 1997), 353-360. | MR 1695002 | Zbl 0904.11020
,[8] Remarks on irrationality of q-harmonic series, Manuscripta Math., 107, no. 4 (2002), 463-477. | MR 1906771 | Zbl 1044.11068
,[9] Heine's basic transform and a permutation group for q-harmonic series, Acta Arith., 111, no. 2 (2004), 153-164. | MR 2039419 | Zbl 1052.11053
,