We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.
@article{BUMI_2010_9_3_1_125_0, author = {J. Kinnunen and M. Kotilainen and V. Latvala}, title = {Hardy-Littlewood Type Gradient Estimates for Quasiminimizers}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {125-136}, zbl = {1205.35005}, mrnumber = {2605915}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_125_0} }
Kinnunen, J.; Kotilainen, M.; Latvala, V. Hardy-Littlewood Type Gradient Estimates for Quasiminimizers. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 125-136. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_125_0/
[1] Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. | MR 1113389 | Zbl 0747.47019
- - - ,[2] Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. | MR 1275460 | Zbl 0812.35039
- ,[3] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | MR 709038
,[4] Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. | MR 778976
- ,[5] A new proof of local regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. | MR 672713 | Zbl 0508.35036
,[6] Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. | MR 2350589 | Zbl 1130.30018
- - ,[7] The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. | MR 304667 | Zbl 0246.30031
,[8] Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. | MR 549962 | Zbl 0409.35015
- ,[9] | MR 1962933 | Zbl 1028.49001
, Direct methods in the calculus of variations, World Scientific, 2003.[10] Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. | MR 2054532 | Zbl 1051.43004
- ,[11] | MR 1207810
- - , Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993.[12] | MR 197653
- - , Inequalities, University Press, Cambridge, 1978.[13] Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. | MR 1996447 | Zbl 1035.31007
- ,[14] BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. | MR 2097241
,[15] Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. | MR 721568 | Zbl 0554.35048
,[16] | MR 1461542
- , Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997.[17] 199. Cambridge University Press, Cambridge, 1994. | MR 1297545
, Invariant potential theory in the unit ball of . London Mathematical Society, Lecture Note Series[18] Dirichlet and Bergman spaces of holomorphic functions in the unit ball of , Monats. Math., 144 (2005), 131-139. | MR 2123960 | Zbl 1068.32005
,[19] A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. | MR 835882 | Zbl 0601.35034
,