Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
Kinnunen, J. ; Kotilainen, M. ; Latvala, V.
Bollettino dell'Unione Matematica Italiana, Tome 3 (2010), p. 125-136 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.

Publié le : 2010-02-01
@article{BUMI_2010_9_3_1_125_0,
     author = {J. Kinnunen and M. Kotilainen and V. Latvala},
     title = {Hardy-Littlewood Type Gradient Estimates for Quasiminimizers},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3},
     year = {2010},
     pages = {125-136},
     zbl = {1205.35005},
     mrnumber = {2605915},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_125_0}
}
Kinnunen, J.; Kotilainen, M.; Latvala, V. Hardy-Littlewood Type Gradient Estimates for Quasiminimizers. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 125-136. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_125_0/

[1] Arazy, J. - Fisher, S. D. - Janson, S. - Peetre, J., Membership of Hankel Operators on the ball in unitary ideals, J. London Math. Soc., 43, no. 2 (1991), 485-508. | MR 1113389 | Zbl 0747.47019

[2] Buckley, S. M. - Koskela, P., Sobolev-Poincaré inequalities for p<1, Indiana Univ. Math., 43, no. 1 (1994), 221-240. | MR 1275460 | Zbl 0812.35039

[3] Di Benedetto, E., C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | MR 709038

[4] Di Benedetto, E. - Trudinger, N. S., Harnack inequality for quasi-minima of variational integrals, Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 1 (1984), 295-308. | MR 778976

[5] Evans, L. C., A new proof of local C1,α regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373. | MR 672713 | Zbl 0508.35036

[6] Eriksson, S-L. - Kotilainen, M. - Latvala, V., Hyperbolic harmonic functions: weak approach with applications in function spaces, Adv. Appl. Clifford Algebr., 17, no. 3 (2007), 425-436. | MR 2350589 | Zbl 1130.30018

[7] Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765. | MR 304667 | Zbl 0246.30031

[8] Giaquinta, M. - Modica, G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169. | MR 549962 | Zbl 0409.35015

[9] Giusti, E., Direct methods in the calculus of variations, World Scientific, 2003. | MR 1962933 | Zbl 1028.49001

[10] Grellier, S. - Jaming, P., Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr., 268 (2004), 50-73. | MR 2054532 | Zbl 1051.43004

[11] Heinonen, J. - Kilpeläinen, T. - Martio, O., Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993. | MR 1207810

[12] Hardy, G. H. - Littlewood, J. E. - Pólya, G., Inequalities, University Press, Cambridge, 1978. | MR 197653

[13] Kinnunen, J. - Martio, O., Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 28 (2003), 459-490. | MR 1996447 | Zbl 1035.31007

[14] Latvala, V., BMO-invariance of quasiminimizers, Ann. Acad. Sci. Fenn. Math., 29, no. 2 (2004), 407-418. | MR 2097241

[15] Lewis, J. L., Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858. | MR 721568 | Zbl 0554.35048

[16] Malý, J. - Ziemer, W. P., Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, RI, 1997. | MR 1461542

[17] Stoll, M., Invariant potential theory in the unit ball of Cn. London Mathematical Society, Lecture Note Series199. Cambridge University Press, Cambridge, 1994. | MR 1297545

[18] Stoll, M., Dirichlet and Bergman spaces of holomorphic functions in the unit ball of Cn, Monats. Math., 144 (2005), 131-139. | MR 2123960 | Zbl 1068.32005

[19] Ziemer, W. P., A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc., 97 (1986), 286-290. | MR 835882 | Zbl 0601.35034