The existence of osculating planes is established for a large class of differentiable arcs in , called "coherent"; all analytic arcs, including the singular ones, belong to this family. On a coherent arc, osculating planes and spheres exist at any point and vary differentiably; Frenet formulas and curvatures are reformulated in order to generalize the classical ones. Coherent arcs form an open set in the space of all arcs, with infinite codimensional complement.
@article{BUMI_2010_9_3_1_111_0, author = {F. Lazzeri}, title = {Piani e sfere osculatrici ad archi differenziabili}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3}, year = {2010}, pages = {111-124}, zbl = {1192.53006}, mrnumber = {2605914}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2010_9_3_1_111_0} }
Lazzeri, F. Piani e sfere osculatrici ad archi differenziabili. Bollettino dell'Unione Matematica Italiana, Tome 3 (2010) pp. 111-124. http://gdmltest.u-ga.fr/item/BUMI_2010_9_3_1_111_0/